(1/3x)+x=20

Simple and best practice solution for (1/3x)+x=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3x)+x=20 equation:



(1/3x)+x=20
We move all terms to the left:
(1/3x)+x-(20)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)+x-20=0
We add all the numbers together, and all the variables
x+(+1/3x)-20=0
We get rid of parentheses
x+1/3x-20=0
We multiply all the terms by the denominator
x*3x-20*3x+1=0
Wy multiply elements
3x^2-60x+1=0
a = 3; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·3·1
Δ = 3588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3588}=\sqrt{4*897}=\sqrt{4}*\sqrt{897}=2\sqrt{897}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{897}}{2*3}=\frac{60-2\sqrt{897}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{897}}{2*3}=\frac{60+2\sqrt{897}}{6} $

See similar equations:

| 3=-2n+-9 | | -10-5m^2=-30 | | 2(x-30)=2x+5 | | 5/x-3=6/x+2 | | 10+5x^2=55 | | a/10/3=42/5 | | Y=9x+704 | | x+1*55=5555 | | 108x+432=146x-112 | | 55x=5555 | | (15)(u*u*u)-224=(73/6) | | 3x=5555 | | (15)(u)^3-224=(73/6) | | 0.33^x=9 | | u/23=9.63 | | 4a^2+4=72 | | 11/x+1=3/x-1 | | 3x+9=-13 | | -p/3.5=9.2 | | 2/3h=51/5 | | 3x‐7=5x+13 | | 2/3h=51/2 | | 7y+4=7(y+6)-45 | | 5.5g=3g+3 | | 3x+5=165 | | 2x-45+x-3x+80+4x-123=0 | | 4x(3x-2)=52 | | 5a+60=11 | | 4(x+5)=80x | | .4y=2.4 | | 1/13x-1/13=1/8x+1/6-1/6x | | –3(j+–2)=–3 |

Equations solver categories