(1/3x)+4+380=x

Simple and best practice solution for (1/3x)+4+380=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3x)+4+380=x equation:



(1/3x)+4+380=x
We move all terms to the left:
(1/3x)+4+380-(x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)-x+4+380=0
We add all the numbers together, and all the variables
-1x+(+1/3x)+384=0
We get rid of parentheses
-1x+1/3x+384=0
We multiply all the terms by the denominator
-1x*3x+384*3x+1=0
Wy multiply elements
-3x^2+1152x+1=0
a = -3; b = 1152; c = +1;
Δ = b2-4ac
Δ = 11522-4·(-3)·1
Δ = 1327116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1327116}=\sqrt{196*6771}=\sqrt{196}*\sqrt{6771}=14\sqrt{6771}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1152)-14\sqrt{6771}}{2*-3}=\frac{-1152-14\sqrt{6771}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1152)+14\sqrt{6771}}{2*-3}=\frac{-1152+14\sqrt{6771}}{-6} $

See similar equations:

| 6r+15=5r | | (5x+3)÷2=-11 | | -4c+10=-9c-10+10c | | 3×5.5+4y=26 | | 22x+24=-33-8 | | y=4(2)^3+5(2)^2-6(2)-4 | | -6w+5=-2w-3 | | 4.905x^2-57x-220=0 | | 4.905x^2-57x+220=0 | | 42/3=r-1.3 | | 6q=7q+9 | | 16r+r^2*3.14=32 | | 7+2y+9=-6y-8 | | 2(1-5x)+4x=4-2(5x+5) | | m^2=30+m | | 6-t=1.5 | | -6r=8-10r | | -6z+10+10=-3z-10 | | 2(1-x)=11 | | -3(8v-2)=-162 | | 11/16x+7/8x=5/16 | | -4z=-6-6z | | 5y+12=7y-12 | | 3(x+3)-5=18 | | -6(1-3m)=3(8+7m) | | x(24+17.95)=x(18.95+18) | | -6(-6p-8)=-132 | | -24+2m=-2 | | 9n+25=12n-8 | | 30=600/x | | b2=225 | | |5+8w|=-21 |

Equations solver categories