(1/3x)+(1/2x)+6=11

Simple and best practice solution for (1/3x)+(1/2x)+6=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3x)+(1/2x)+6=11 equation:



(1/3x)+(1/2x)+6=11
We move all terms to the left:
(1/3x)+(1/2x)+6-(11)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)+(+1/2x)+6-11=0
We add all the numbers together, and all the variables
(+1/3x)+(+1/2x)-5=0
We get rid of parentheses
1/3x+1/2x-5=0
We calculate fractions
2x/6x^2+3x/6x^2-5=0
We multiply all the terms by the denominator
2x+3x-5*6x^2=0
We add all the numbers together, and all the variables
5x-5*6x^2=0
Wy multiply elements
-30x^2+5x=0
a = -30; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-30)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-30}=\frac{-10}{-60} =1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-30}=\frac{0}{-60} =0 $

See similar equations:

| 3(x-4)+2x=-9 | | 110-7x+11+85+95=360 | | (4x+5)/7=7 | | 18n=10 | | 4(t-4)+8=4(2t-4) | | 40+2x=4(−x+2)−16 | | 80+15x+10+85+95=360 | | 8(-7b-2)=-296 | | 34=4u+6 | | -x^2+33x-252=0 | | 14+2r=r+7 | | v+92=212 | | (x+37)+(x+67)=180 | | x+1/4x=100 | | 6t(2t-3)=36-6t | | 20.00+1.50=11.00+2.75x | | 21=3+w/4 | | 3n-4+4n+1=8+2n+4 | | 6y+2=2y+8 | | 8(y+5)=88 | | (2r-3)/3=0.6 | | 3-7x+4=5-4x+9-10x | | a=30-0/10 | | 5(g+3)=65 | | 3x+23+3x-4=57-3x+34 | | 9=3w-6 | | 4/3+k=8/14 | | 5u+8=83 | | 2y-18-7y=4y-2-13y | | 2y-18-7y=4y-2-3y | | 0.40(r-2)=0.15(r-4) | | |7x+3|=18 |

Equations solver categories