(1/30)x+(1/75)x=1

Simple and best practice solution for (1/30)x+(1/75)x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/30)x+(1/75)x=1 equation:



(1/30)x+(1/75)x=1
We move all terms to the left:
(1/30)x+(1/75)x-(1)=0
Domain of the equation: 30)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 75)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/30)x+(+1/75)x-1=0
We multiply parentheses
x^2+x^2-1=0
We add all the numbers together, and all the variables
2x^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| 3n-4=2n+9 | | 5(-2j-5)=-10j | | 3(x-2)^2-4=71 | | -3(-6y+9)=17y-17 | | 20+.50x=0 | | 25x^2-108x+9^2=0 | | 2(6+x)=7(x+6) | | -15s+9+6=15-15s | | -g+6=3g-10 | | 12(10b-9)=-12(9+8b | | 10r+6=9r | | 20u+14+11u=-7(-6u+20) | | 54=2(15)+2x | | $20.00-v=$4.83 | | -y-10=5+2y | | 12x+30=6(2x+5) | | 13f-14-20f=-7f-12 | | 7x-3(5x+15)=27 | | -3r-10=-7r+10 | | 6p-19=-11p+14+14p | | –x+2=9. | | -7v=10-6v | | 12t=4500 | | x+7=15-2-x+2 | | 6z-20=-4z-20+13z | | –x+5=11. | | -4(3x-6)=6 | | 9+2n=4n+3 | | 18-19g=17g+9(-4g+15) | | 0.15t+0.4=0.25t | | 5+19s=-6+11+19s | | 50x+60x=247.5 |

Equations solver categories