(1/3)x+(1/6)x=1/5

Simple and best practice solution for (1/3)x+(1/6)x=1/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)x+(1/6)x=1/5 equation:



(1/3)x+(1/6)x=1/5
We move all terms to the left:
(1/3)x+(1/6)x-(1/5)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)x+(+1/6)x-(+1/5)=0
We multiply parentheses
x^2+x^2-(+1/5)=0
We get rid of parentheses
x^2+x^2-1/5=0
We multiply all the terms by the denominator
x^2*5+x^2*5-1=0
Wy multiply elements
5x^2+5x^2-1=0
We add all the numbers together, and all the variables
10x^2-1=0
a = 10; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·10·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*10}=\frac{0-2\sqrt{10}}{20} =-\frac{2\sqrt{10}}{20} =-\frac{\sqrt{10}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*10}=\frac{0+2\sqrt{10}}{20} =\frac{2\sqrt{10}}{20} =\frac{\sqrt{10}}{10} $

See similar equations:

| u+25=89 | | `9x+1-7x-5=-20` | | x-2+18=16 | | –7x+9=–12 | | 0.3x-2.4=1.25x | | -7d=49/6 | | 21-6a=27-8a | | a+3/5-5=3 | | x+2+18=16 | | A=2n-6 | | 3x+7=8. | | 2(x+8)=2(2+1) | | 2y+16=124 | | 180=(8x+5)+(4x-17) | | -7w=-35= | | 3x-1=3/5 | | 9=14+n | | 96=8g | | −2=67p−2=67p | | 9x²+4=8x²+68 | | 3(x+5)+2(2x+3=0 | | (1/2)(8y-6) = 5y-(y+3) | | |-5x+9|=16 | | 15(x-3)/5=(2x-3) | | 8x+9=-x+81 | | 7x²-9=6x²+40 | | x^2-5=-53 | | 2x135=126-7 | | 3(s-2)=3s+6 | | 52+m=72 | | -(5n+6)=-7n+4 | | 7x-3+x^2+29=180 |

Equations solver categories