(1/3)x+(1/5)=1

Simple and best practice solution for (1/3)x+(1/5)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)x+(1/5)=1 equation:



(1/3)x+(1/5)=1
We move all terms to the left:
(1/3)x+(1/5)-(1)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/3)x-1+(1/5)=0
We add all the numbers together, and all the variables
(+1/3)x-1+(+1/5)=0
We multiply parentheses
x^2-1+(+1/5)=0
We get rid of parentheses
x^2-1+1/5=0
We multiply all the terms by the denominator
x^2*5+1-1*5=0
We add all the numbers together, and all the variables
x^2*5-4=0
Wy multiply elements
5x^2-4=0
a = 5; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·5·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*5}=\frac{0-4\sqrt{5}}{10} =-\frac{4\sqrt{5}}{10} =-\frac{2\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*5}=\frac{0+4\sqrt{5}}{10} =\frac{4\sqrt{5}}{10} =\frac{2\sqrt{5}}{5} $

See similar equations:

| 6a-2a=-49 | | 1m-1=1 | | 7x+19=x=7 | | 3x+x=370 | | F(n)=n+2n+5 | | 59x-1=180 | | a/11+3=5 | | .4x-4.8=1.2x-4.8 | | 6y+3-2(5y)=0 | | 5x-12=-28 | | 2/3(9m-12)-6m+8=0 | | x-5+25=180 | | 4n-(-3.7)=-11.9 | | 2xx=13 | | 14-4x=-11 | | 12-5(3x-5)=-3 | | -4(2d-3)=60 | | y+4y+10y=0 | | 8-n+2=16 | | 3x-5+9x=6(3x-2)+5 | | 2b-16+3b=14 | | 24x+51=156 | | 5(x+10)+3x=26 | | (7/4)x=-(5/4) | | 6n=42.6 | | 2x2=12x-10 | | 15k+15=45;k | | 3(5z+1)=13z+5 | | y=-4(14)+50 | | -30x^2+115x+20=0 | | 2-x=-5x-22 | | 78+3x=90 |

Equations solver categories