(1/3)(9-x)-6=x

Simple and best practice solution for (1/3)(9-x)-6=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)(9-x)-6=x equation:



(1/3)(9-x)-6=x
We move all terms to the left:
(1/3)(9-x)-6-(x)=0
Domain of the equation: 3)(9-x)!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)(-1x+9)-x-6=0
We add all the numbers together, and all the variables
-1x+(+1/3)(-1x+9)-6=0
We multiply parentheses ..
(-1x^2+1/3*9)-1x-6=0
We multiply all the terms by the denominator
(-1x^2+1-1x*3*9)-6*3*9)=0
We add all the numbers together, and all the variables
(-1x^2+1-1x*3*9)=0
We get rid of parentheses
-1x^2-1x*3*9+1=0
Wy multiply elements
-1x^2-27x*9+1=0
Wy multiply elements
-1x^2-243x+1=0
a = -1; b = -243; c = +1;
Δ = b2-4ac
Δ = -2432-4·(-1)·1
Δ = 59053
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-243)-\sqrt{59053}}{2*-1}=\frac{243-\sqrt{59053}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-243)+\sqrt{59053}}{2*-1}=\frac{243+\sqrt{59053}}{-2} $

See similar equations:

| -54x+3=30 | | 211=289-u | | 234=-u+184 | | -x+245=106 | | 4w=6-10 | | 160=250-x | | 7x+30=180+11x-24 | | a)6 | | a)6 | | 45=5x^2+10 | | 0.5x+3=1/3x-4 | | w+1/2=3/14 | | 3x+2(12.3)=7 | | 22=7x+(4*2) | | 32+4+6x=180 | | 5/4e+1/2=2e=1/2 | | 2x^2-7x-140=0=0 | | 2x^2-7x-140=0 | | 20+17w=-6+1 | | X+2y=142×+6y=30 | | -2(x+1)2=20 | | 14-|3x+6|=5 | | 35+w+41=180w+35=180 | | 110=3x=5 | |  10x^2=5x | | 45.75k=183 | | F=2x+15 | | 4x+7=-x-11 | | 120/5=5z | | 2x4-9x2+68=0 | | 4x-9+5x=11 | | -4×+3=6-3n |

Equations solver categories