(1/3(x))+(x)=180

Simple and best practice solution for (1/3(x))+(x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3(x))+(x)=180 equation:



(1/3(x))+(x)=180
We move all terms to the left:
(1/3(x))+(x)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)+x-180=0
We add all the numbers together, and all the variables
x+(+1/3x)-180=0
We get rid of parentheses
x+1/3x-180=0
We multiply all the terms by the denominator
x*3x-180*3x+1=0
Wy multiply elements
3x^2-540x+1=0
a = 3; b = -540; c = +1;
Δ = b2-4ac
Δ = -5402-4·3·1
Δ = 291588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291588}=\sqrt{8836*33}=\sqrt{8836}*\sqrt{33}=94\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-94\sqrt{33}}{2*3}=\frac{540-94\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+94\sqrt{33}}{2*3}=\frac{540+94\sqrt{33}}{6} $

See similar equations:

| -8.01p=44.856 | | 3c-22=-1 | | F(-3)=5-2x | | –11g+6g−4=1 | | 2x+70=340 | | x*4=900 | | 2z+6+4z=z-3+5z+12-z | | 2(x+3)+2(x+4)=24 | | 5(3-×)+2(3-x)=14 | | -18h—20h—16h=-18 | | 17x-17=-58 | | 10=5/a | | 5/2x+3=1/2x | | 0.2=-3.3+m | | 5(7x-8)=240 | | -4(7m+4)=152 | | 3t^2-12t-8=0 | | p=2/3 | | -1=14+j | | (6x-5)=(7x-10) | | w2-14=35 | | 7/m-8=8/2 | | 7b-16=20+3b | | -3=7-2s | | -3x-32=-25-4x | | y/2*2=-10*2 | | x+(7/4)=3.86 | | -6-5(7k+3)=189 | | 2z+6+4z=Z-3+5z+12 | | 10z+5z-10=9z+8 | | y+y+1=107 | | 16v+2v+2v+4v-14v=10 |

Equations solver categories