(1/2x+20)+(3x-85)=x

Simple and best practice solution for (1/2x+20)+(3x-85)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+20)+(3x-85)=x equation:



(1/2x+20)+(3x-85)=x
We move all terms to the left:
(1/2x+20)+(3x-85)-(x)=0
Domain of the equation: 2x+20)!=0
x∈R
We add all the numbers together, and all the variables
-1x+(1/2x+20)+(3x-85)=0
We get rid of parentheses
-1x+1/2x+3x+20-85=0
We multiply all the terms by the denominator
-1x*2x+3x*2x+20*2x-85*2x+1=0
Wy multiply elements
-2x^2+6x^2+40x-170x+1=0
We add all the numbers together, and all the variables
4x^2-130x+1=0
a = 4; b = -130; c = +1;
Δ = b2-4ac
Δ = -1302-4·4·1
Δ = 16884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16884}=\sqrt{36*469}=\sqrt{36}*\sqrt{469}=6\sqrt{469}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-130)-6\sqrt{469}}{2*4}=\frac{130-6\sqrt{469}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-130)+6\sqrt{469}}{2*4}=\frac{130+6\sqrt{469}}{8} $

See similar equations:

| 7(w-4)-2=-3(-8w+4)-7w | | −3(2p−6)+4p=−10p+42 | | 20-2(2w+1)=12w-2(12+2) | | -5(h-80)=-40 | | -6c+8=8-6c | | 4w-1=4w-1 | | 7(w-2)-2=-3(-8w+4)-7w | | 3(4−x)+9x=6x+10 | | –5t=5t−10 | | 6g+8=98 | | -6+9f=9f-6 | | (x+15)+(4x-45)=x | | 7p-8=7p-2 | | -5(x–3)=10(2x+1) | | x+7+6=180 | | 47y=23(2y+20) | | F(x-7)=12-7x | | 7(b+3)+3b=20 | | 5(w+5)-8w=28 | | b+1+6b=15 | | –9u=4−10u | | 6m-1=65 | | t3=2.3 | | x+x+(x-6)+(x-6)=68 | | 10r=9r+10 | | 6(s+2)=60 | | 5(17+9x-2+3x)=375 | | 3x-63=×+37 | | (3-x)=3(x-4) | | 2a+13=25 | | 2q-36=38 | | 5x+7=42 6 |

Equations solver categories