(1/2x+15)+(2x-50)=180

Simple and best practice solution for (1/2x+15)+(2x-50)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+15)+(2x-50)=180 equation:



(1/2x+15)+(2x-50)=180
We move all terms to the left:
(1/2x+15)+(2x-50)-(180)=0
Domain of the equation: 2x+15)!=0
x∈R
We get rid of parentheses
1/2x+2x+15-50-180=0
We multiply all the terms by the denominator
2x*2x+15*2x-50*2x-180*2x+1=0
Wy multiply elements
4x^2+30x-100x-360x+1=0
We add all the numbers together, and all the variables
4x^2-430x+1=0
a = 4; b = -430; c = +1;
Δ = b2-4ac
Δ = -4302-4·4·1
Δ = 184884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184884}=\sqrt{4*46221}=\sqrt{4}*\sqrt{46221}=2\sqrt{46221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-430)-2\sqrt{46221}}{2*4}=\frac{430-2\sqrt{46221}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-430)+2\sqrt{46221}}{2*4}=\frac{430+2\sqrt{46221}}{8} $

See similar equations:

| -85=5m | | 18=c-(-1) | | 2p-8=p-3 | | 10n^2-3n-18=0 | | j+-8=-47 | | v+-78=-19 | | 15x+20=10+5x | | 16t^2+96t+4=112 | | x÷2+8=3(x+2) | | o-(-15)=18 | | g-9=8 | | 2x/7+8/4=20/28 | | r-16=-19 | | j-16=2 | | d=2-(-17) | | c=19-10 | | d=-14+-1 | | 14n-6+4n=64 | | -s=-14 | | b^2-96+18=0 | | (w+7)^2=121 | | X^2-90x-720=0 | | 6m-3m+3+2m-4=1 | | 7(5+3x)–6(x+3)=0 | | 0.9x−0.7=9.2 | | 6m-3m+3+2m-4/6=1 | | .03(3+2x)+1.2x=3.2 | | 1/5x-8=11 | | 1/5x−8=11 | | 4x+(6x-10)=180 | | 1/9x+2=12 | | 3x+8=−34 |

Equations solver categories