If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2x)+(31/4x+4)+(21/2x-10)=180
We move all terms to the left:
(1/2x)+(31/4x+4)+(21/2x-10)-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4x+4)!=0
x∈R
Domain of the equation: 2x-10)!=0We add all the numbers together, and all the variables
x∈R
(+1/2x)+(31/4x+4)+(21/2x-10)-180=0
We get rid of parentheses
1/2x+31/4x+21/2x+4-10-180=0
We calculate fractions
(84x+1)/8x^2+62x/8x^2+4-10-180=0
We add all the numbers together, and all the variables
(84x+1)/8x^2+62x/8x^2-186=0
We multiply all the terms by the denominator
(84x+1)+62x-186*8x^2=0
We add all the numbers together, and all the variables
62x+(84x+1)-186*8x^2=0
Wy multiply elements
-1488x^2+62x+(84x+1)=0
We get rid of parentheses
-1488x^2+62x+84x+1=0
We add all the numbers together, and all the variables
-1488x^2+146x+1=0
a = -1488; b = 146; c = +1;
Δ = b2-4ac
Δ = 1462-4·(-1488)·1
Δ = 27268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27268}=\sqrt{4*6817}=\sqrt{4}*\sqrt{6817}=2\sqrt{6817}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(146)-2\sqrt{6817}}{2*-1488}=\frac{-146-2\sqrt{6817}}{-2976} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(146)+2\sqrt{6817}}{2*-1488}=\frac{-146+2\sqrt{6817}}{-2976} $
| 5e=14|2e | | 3x^2-x=x+1 | | -86-10x=-6x+26 | | (1/2x)+(31/4x4)+(21/2x-10)=180 | | 2y+3.5=120 | | -111-x=10x+186 | | 4-2x=6x-20 | | 19w+1=20 | | 18x+9-2x=-2 | | 2(w+8)=18 | | 224=x-75 | | 7y+19=82 | | 12x-21=10x+41 | | -9k+5k=-28 | | 3x-5+2=x-9=193 | | 6s+11=17 | | 8=11p+10p | | 10=3w+8 | | 8p+9=17 | | -27+10x=5x+56 | | 2(n+5=-2) | | 6x=25-5 | | 6(w+2)=18 | | 4(3p+5)=80 | | w/2+17=31 | | 14-3*y=26 | | 2t+14=16 | | 5(u+1)=20 | | -144+7x=-5x+36 | | 4(3+2n)=52 | | -2y+6=5y-6 | | 42=-2m+2+m |