(1/2a)+3+a+3=44

Simple and best practice solution for (1/2a)+3+a+3=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2a)+3+a+3=44 equation:



(1/2a)+3+a+3=44
We move all terms to the left:
(1/2a)+3+a+3-(44)=0
Domain of the equation: 2a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+1/2a)+a+3+3-44=0
We add all the numbers together, and all the variables
a+(+1/2a)-38=0
We get rid of parentheses
a+1/2a-38=0
We multiply all the terms by the denominator
a*2a-38*2a+1=0
Wy multiply elements
2a^2-76a+1=0
a = 2; b = -76; c = +1;
Δ = b2-4ac
Δ = -762-4·2·1
Δ = 5768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5768}=\sqrt{4*1442}=\sqrt{4}*\sqrt{1442}=2\sqrt{1442}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-2\sqrt{1442}}{2*2}=\frac{76-2\sqrt{1442}}{4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+2\sqrt{1442}}{2*2}=\frac{76+2\sqrt{1442}}{4} $

See similar equations:

| 10-u/2=1 | | 4=u+21/9 | | w/5+16=24 | | d-84/4=4 | | 2(x+1)=7x+2x | | 6.2g=12 | | u/4-1=4 | | u/4-1=4 | | u/4-1=4 | | u/4-1=4 | | 5.1g+2=1.1g+14 | | 5.1g+2=1.1g+14 | | 5.1g+2=1.1g+14 | | -77=-81(1-8x)+5(6x+5) | | -77=-81(1-8x)+5(6x+5) | | 3=m/4-3 | | 8.5x=7.5 | | 77/11=t | | 77/11=t | | 7x/2x+1x/2x=71/2+9x/2x | | -2=4-(3x+6) | | 6x+8=2x−28 | | 3(6f+2)=15 | | 3(6f+2)=15 | | X+4/6=2/3+x-7/2 | | 7-2=4-(3x+6) | | 10x+5=6x-8 | | 8x-2(x-8)+4x=4- | | -2/3x+5=-13 | | 3/n-5=8/n | | 5(x-60+2=7x-8 | | 15d+3=18d |

Equations solver categories