(1/2*x)+1+x=100

Simple and best practice solution for (1/2*x)+1+x=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2*x)+1+x=100 equation:



(1/2x)+1+x=100
We move all terms to the left:
(1/2x)+1+x-(100)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+x+1-100=0
We add all the numbers together, and all the variables
x+(+1/2x)-99=0
We get rid of parentheses
x+1/2x-99=0
We multiply all the terms by the denominator
x*2x-99*2x+1=0
Wy multiply elements
2x^2-198x+1=0
a = 2; b = -198; c = +1;
Δ = b2-4ac
Δ = -1982-4·2·1
Δ = 39196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39196}=\sqrt{4*9799}=\sqrt{4}*\sqrt{9799}=2\sqrt{9799}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-198)-2\sqrt{9799}}{2*2}=\frac{198-2\sqrt{9799}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-198)+2\sqrt{9799}}{2*2}=\frac{198+2\sqrt{9799}}{4} $

See similar equations:

| m+1/2=1 | | 27=3^n | | 2x-3+8=x+15-8 | | 8x-5=7x+15 | | 24+m=15 | | 3x20=30 | | d/4-d/6=15 | | 12=8=8x+4 | | 2a+10=3a+20 | | 3x75x94=21150 | | 2^2048=x | | 2^x=2097152 | | (2+x)(3x-8)=0 | | 7x2-3x=37 | | 2g(1)=6-2g | | 0.2x8=1.60 | | 7m=4(m-8) | | 5p+9=7-3p | | 20(4+5)=10y(6) | | 20t(4+2)=5(6) | | 10k(2+3)=4(2) | | (2x+5)(x-10)=80 | | X+y+126=180 | | 9=3^6x | | 3(8w-12)=3(2w-6) | | 14/140=22/x | | 6x+3=2(x-1) | | 5x+12=5+9x | | X^+36x-460=0 | | 5(2x-3)=2x-3 | | X+x+77=180 | | X+x+x+110=180 |

Equations solver categories