(1/2)y+(1/3)y=10

Simple and best practice solution for (1/2)y+(1/3)y=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)y+(1/3)y=10 equation:



(1/2)y+(1/3)y=10
We move all terms to the left:
(1/2)y+(1/3)y-(10)=0
Domain of the equation: 2)y!=0
y!=0/1
y!=0
y∈R
Domain of the equation: 3)y!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+1/2)y+(+1/3)y-10=0
We multiply parentheses
y^2+y^2-10=0
We add all the numbers together, and all the variables
2y^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 5(×-3)/6-3=1-x/9 | | (1/2)t+(1/3)t=10 | | 7(u-5)-2=-3(-9u+9)-6u | | c=2(3.14)(31.5) | | 7(5x+4)=-9x | | 9(y-4)-7=5(3y | | 3(2n+8)+2n=56 | | -7(x+7)+8x=-(x-1)+2 | | 2(g-5)=49 | | -0.10(50)+0.65x=0.05(x-4) | | -4-b=-2 | | 6y+2/5=6 | | 7+8=2y-4 | | -6(x+5)=-5(x+6) | | 8n=4096 | | 73=11^x | | 3x-5=-5-3 | | -5(-2x-4)=-3x+4 | | 3x-(5x-9)=7-4(x-1) | | 8y+12=12y-8 | | 2^{3x+4}=3^{2x+1} | | -10x+5+13x-3x=5 | | 3(x-5)-1=3x-15 | | y^2-16y+40=0 | | X^2+3x-7x-21=0 | | -8(8x-6)=-8x | | n+n^2=132 | | 3(x-5)-1=2x-15 | | 2(3-2w)=-2(w+5) | | 2(w-3)=3.4(w1.2) | | 8m=-136 | | 5=10.v |

Equations solver categories