(1/2)k+2=5=(5/6)k

Simple and best practice solution for (1/2)k+2=5=(5/6)k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)k+2=5=(5/6)k equation:



(1/2)k+2=5=(5/6)k
We move all terms to the left:
(1/2)k+2-(5)=0
Domain of the equation: 2)k!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
(+1/2)k+2-5=0
We add all the numbers together, and all the variables
(+1/2)k-3=0
We multiply parentheses
k^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| a/2-2a/5=1 | | x^9=12^2⋅12^7 | | x+14=5x+-6 | | 16x2−36=0. | | −63=−14+7n | | 38=-6-7v-27 | | 8+2x=2x | | 180=6x+(x-16) | | |8+5a|=14-9 | | a(-5)=-39 | | -4(3-x)=8 | | 6(x-1)=x(x+6) | | 4+7x=9x-10 | | t|2=15 | | -5(6x+1)=-30x+5 | | 43=v/5+17 | | |x-6|=0 | | 4g+2=50 | | 4(x-3)+68=-4 | | u/2-11=28 | | 0x+2=5x+1 | | (2x+3)(2x+3)=-9x+27 | | 6d−211​=2d−213​ | | 224=-2w | | 4x-5+3x=7 | | 3v+54=12v | | -46=-4x-3(-5x-3) | | 9n=6n+30 | | s/4=1 | | -9x-2(-3x+3.7)+2=10x+1.6 | | 5x+-6=-1 | | (2x+3)^2=-9x+27 |

Equations solver categories