(1/2)19x-26=6x+31

Simple and best practice solution for (1/2)19x-26=6x+31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)19x-26=6x+31 equation:



(1/2)19x-26=6x+31
We move all terms to the left:
(1/2)19x-26-(6x+31)=0
Domain of the equation: 2)19x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)19x-(6x+31)-26=0
We multiply parentheses
19x^2-(6x+31)-26=0
We get rid of parentheses
19x^2-6x-31-26=0
We add all the numbers together, and all the variables
19x^2-6x-57=0
a = 19; b = -6; c = -57;
Δ = b2-4ac
Δ = -62-4·19·(-57)
Δ = 4368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4368}=\sqrt{16*273}=\sqrt{16}*\sqrt{273}=4\sqrt{273}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{273}}{2*19}=\frac{6-4\sqrt{273}}{38} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{273}}{2*19}=\frac{6+4\sqrt{273}}{38} $

See similar equations:

| (1/2)19x-26=6x=31 | | |4x-16|=0 | | 16(x–3)=-80 | | 3.5=-13.6+(-3.4c)+1.7c | | -2=10x+8 | | w+90=(5-3w) | | 7x=(1/2)17x-18 | | 9(x+4)+8(x+4)=6x-6 | | 5(2-y)=0 | | -x÷3=27 | | x-3.5=4.25 | | 6x-1=(1/2)13x-10 | | 2x2-4x=48 | | 8-4s=s=13 | | 80+4x=90 | | 2x2+2x=24 | | -5+x/4=-4 | | 14x2+x=4 | | 34/8-9=13+y/8 | | P=6.95+0.95t | | 21=v/2-14 | | 9p+11.50=$94.75 | | 5x+3+73=180 | | r-18.7=-4.4 | | 2/3x-4=12+x | | P=6.95+095t | | 9p+11.5p=$94.75 | | 9=2-x | | 2x+x=108 | | 5u+17=102 | | 3x+2+x-26=180 | | 8x−7=−16 |

Equations solver categories