(1/2)*n+40=55

Simple and best practice solution for (1/2)*n+40=55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)*n+40=55 equation:



(1/2)*n+40=55
We move all terms to the left:
(1/2)*n+40-(55)=0
Domain of the equation: 2)*n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/2)*n+40-55=0
We add all the numbers together, and all the variables
(+1/2)*n-15=0
We multiply parentheses
n^2-15=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $

See similar equations:

| (8x-4+3x-6-6x+6)/12=2 | | 5+3x=3x+9 | | (1/2)n+40=55 | | 4^2x3=32^x-4 | | 2-8(.2x-1)=3.5x-2.75 | | 4x+6-x=2x-10 | | 2x+3x-x=3 | | 14x^2+90x+100=0 | | 55+8.50(x)=123 | | 2x+53=5x+2+90 | | 9x-1=10+4x | | 9^x=300 | | n/4-5=13 | | -3e+12=9 | | 1x+31=101 | | (2x)=(5x-6) | | 180=2x+51 | | 5x+6=-(2x+13) | | 8x=10=9x | | 5^(2x-3)=4 | | 2x14=-9 | | x/2-17=5 | | 19x-5=15x-1 | | 14x=9-2x | | 199.20=6(0.08m+24.80+0.10(24.80) | | 0.04(2r+2)-0.03(2r-5)=0.29 | | q=6+2q=18 | | 3x^2+5=103 | | q=8q=24 | | 5m+2(m+5)=7 | | 4^3x+2=16^x-4/2x | | 3y+5=y-9 |

Equations solver categories