(1/2)(x+8)=7

Simple and best practice solution for (1/2)(x+8)=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(x+8)=7 equation:



(1/2)(x+8)=7
We move all terms to the left:
(1/2)(x+8)-(7)=0
Domain of the equation: 2)(x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(x+8)-7=0
We multiply parentheses ..
(+x^2+1/2*8)-7=0
We multiply all the terms by the denominator
(+x^2+1-7*2*8)=0
We get rid of parentheses
x^2+1-7*2*8=0
We add all the numbers together, and all the variables
x^2-111=0
a = 1; b = 0; c = -111;
Δ = b2-4ac
Δ = 02-4·1·(-111)
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{111}}{2*1}=\frac{0-2\sqrt{111}}{2} =-\frac{2\sqrt{111}}{2} =-\sqrt{111} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{111}}{2*1}=\frac{0+2\sqrt{111}}{2} =\frac{2\sqrt{111}}{2} =\sqrt{111} $

See similar equations:

| 12y+10y-+14=80 | | 6(1+4n)-n=6+2n | | 8+96x-16x^2=0 | | -8(5+x)=16 | | 148+96x-16x^2=0 | | -11=3-2x | | 3x+30/8=x | | 0.5x+0.167=0.75 | | (x–1)(x+2)=10 | | 13x+12=49 | | 13÷6x=7÷5x | | 0.5x+1/6=0.75 | | F=9/8(n-10) | | 22x-23=6(3x-5)+4x+7 | | (3x-17)+(2x-23)=90 | | -2(4x+5)+1=3x-(11x+5) | | -5(3t-2)+4t=3t-7 | | 41+42+x=180 | | 3d÷3=15 | | 2(x+10)=-60 | | 78=48+f | | 3r-14=78 | | 5(14f−8)=2f+4(18f+9) | | 3r=78-14 | | -3r=78-14 | | 34-6(5-x)=0 | | 03x+6=7.5 | | -3r=-78+14 | | -2(5t-2)+7t=8t-8 | | 4c+5=+3 | | 78=42+a | | 112x2-12x+13=0 |

Equations solver categories