(1/2)(b+2)+3b=-1

Simple and best practice solution for (1/2)(b+2)+3b=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(b+2)+3b=-1 equation:



(1/2)(b+2)+3b=-1
We move all terms to the left:
(1/2)(b+2)+3b-(-1)=0
Domain of the equation: 2)(b+2)!=0
b∈R
We add all the numbers together, and all the variables
(+1/2)(b+2)+3b-(-1)=0
We add all the numbers together, and all the variables
3b+(+1/2)(b+2)+1=0
We multiply parentheses ..
(+b^2+1/2*2)+3b+1=0
We multiply all the terms by the denominator
(+b^2+1+3b*2*2)+1*2*2)=0
We add all the numbers together, and all the variables
(+b^2+1+3b*2*2)=0
We get rid of parentheses
b^2+3b*2*2+1=0
Wy multiply elements
b^2+12b*2+1=0
Wy multiply elements
b^2+24b+1=0
a = 1; b = 24; c = +1;
Δ = b2-4ac
Δ = 242-4·1·1
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{143}}{2*1}=\frac{-24-2\sqrt{143}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{143}}{2*1}=\frac{-24+2\sqrt{143}}{2} $

See similar equations:

| 8=4-w | | 10-2x=4-3x | | 15x-15x+3x=2x+20 | | 17.94=3g+3.51 | | 20=3g+5 | | 6x+3÷3=-7 | | 2(3x-5)+10=5x-13 | | 108=n(n-3) | | 5x+7x=12-4-3x+7x | | 7+x/5=4 | | -6=-7+a/4 | | 2/3x=2-5/6 | | 244-w=142 | | (8x-2)=(6x+6) | | 11x+15=90 | | -2x-6(5-4x)=8 | | x+(0,015x)=559.36 | | 3z+2z-4=11 | | x=9-3(-60/33)/2 | | 13x-5+2x+35=90 | | 3x2+4=-9 | | -2(w+7)+2=6 | | -2(x-4)=2x+(-4) | | 9+x+1+2x-8=11+2x | | 3x-4x*2x=180 | | x=9-3(-60/330/2 | | 15x-1=7x-4 | | 32-7x=+6(x+3) | | 126=-e+238 | | -0+2x=3 | | 3=-(m+4) | | 4x(4+6x)=-222 |

Equations solver categories