If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(4x+6)=15
We move all terms to the left:
(1/2)(4x+6)-(15)=0
Domain of the equation: 2)(4x+6)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(4x+6)-15=0
We multiply parentheses ..
(+4x^2+1/2*6)-15=0
We multiply all the terms by the denominator
(+4x^2+1-15*2*6)=0
We get rid of parentheses
4x^2+1-15*2*6=0
We add all the numbers together, and all the variables
4x^2-179=0
a = 4; b = 0; c = -179;
Δ = b2-4ac
Δ = 02-4·4·(-179)
Δ = 2864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2864}=\sqrt{16*179}=\sqrt{16}*\sqrt{179}=4\sqrt{179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{179}}{2*4}=\frac{0-4\sqrt{179}}{8} =-\frac{4\sqrt{179}}{8} =-\frac{\sqrt{179}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{179}}{2*4}=\frac{0+4\sqrt{179}}{8} =\frac{4\sqrt{179}}{8} =\frac{\sqrt{179}}{2} $
| 12-5(x+4)=6 | | c+-9=-6.51 | | 9+7x-3-4=27+10 | | 2(u-7)-8=-5(-2u+5)-2u | | 5(x+4)-1=2(4x=3)-5 | | 22/3-w/3=-7 | | 2m+5/3=-3 | | 5x+20=-10-30x | | 2b+95=−115 | | v-5.5=1.82 | | -3(5x-4)=102 | | 7(v-8)=-6v-17 | | 0.33x+2x+1.66x-4x=0 | | .7t=84 | | -b/5+41/2=0 | | 14x+6=2(5x+6)+4x | | 41/2=b/5 | | 3x+1/5-4=-2 | | 7(3k-2)-13=82 | | (3x)^2-9x=0 | | –5x+7=42 | | 12d-8d-3d=13 | | (3−2i)^2+6(5−i)−(18−5i)=0 | | 0.7x-2.4+0.2x=3 | | 3x-4+6=2 | | 6x+30+4x=(x+3 | | 6.6+9=1.6g+34 | | -4x-23=-7(x+2) | | 6x-9x-7x+15x=0 | | 4(7x-3)=32x-18-4x | | 4=2x+31 | | 2x-15=127 |