If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(3x+8)=2x-3
We move all terms to the left:
(1/2)(3x+8)-(2x-3)=0
Domain of the equation: 2)(3x+8)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(3x+8)-(2x-3)=0
We get rid of parentheses
(+1/2)(3x+8)-2x+3=0
We multiply parentheses ..
(+3x^2+1/2*8)-2x+3=0
We multiply all the terms by the denominator
(+3x^2+1-2x*2*8)+3*2*8)=0
We add all the numbers together, and all the variables
(+3x^2+1-2x*2*8)=0
We get rid of parentheses
3x^2-2x*2*8+1=0
Wy multiply elements
3x^2-32x*8+1=0
Wy multiply elements
3x^2-256x+1=0
a = 3; b = -256; c = +1;
Δ = b2-4ac
Δ = -2562-4·3·1
Δ = 65524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{65524}=\sqrt{4*16381}=\sqrt{4}*\sqrt{16381}=2\sqrt{16381}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-2\sqrt{16381}}{2*3}=\frac{256-2\sqrt{16381}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+2\sqrt{16381}}{2*3}=\frac{256+2\sqrt{16381}}{6} $
| 4x+7-2x=3 | | 3x-6=10-10 | | -13x+5x=12 | | 48-2x=2 | | (11-x)/5=9-7x | | 18x^2+x=−2 | | 18x2+x=−2 | | .-2=-(n-8) | | 3k+9=6k+14 | | 3x-70=14 | | 1. 12r−8−12= | | (3x-2)/4-(2x+5)/3=1-x/6 | | -6g+10=-8g−2 | | 1=u-89/6 | | 2x2+6=13x | | 3n-12=72 | | 4/10(5x-4)+2=2/5(2x) | | -36j=2/3 | | 4y+6=27-4 | | h+4/10=4 | | −2/3x=12 | | K^3-k^2-1=0 | | 14+6a=-2a+3 | | 6x-18=4(x-8) | | 2x^2-6x-123=0 | | 10x(8+x)=50 | | 0=-5x^2+7.5x+6 | | 31-5y=6 | | 9+x/6=4 | | 9x-7+15x-5=180 | | 5x/3-x=14 | | z+41/7=9 |