If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(2x+4)=x+3
We move all terms to the left:
(1/2)(2x+4)-(x+3)=0
Domain of the equation: 2)(2x+4)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(2x+4)-(x+3)=0
We get rid of parentheses
(+1/2)(2x+4)-x-3=0
We multiply parentheses ..
(+2x^2+1/2*4)-x-3=0
We multiply all the terms by the denominator
(+2x^2+1-x*2*4)-3*2*4)=0
We add all the numbers together, and all the variables
(+2x^2+1-x*2*4)=0
We get rid of parentheses
2x^2-x*2*4+1=0
Wy multiply elements
2x^2-8x*4+1=0
Wy multiply elements
2x^2-32x+1=0
a = 2; b = -32; c = +1;
Δ = b2-4ac
Δ = -322-4·2·1
Δ = 1016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1016}=\sqrt{4*254}=\sqrt{4}*\sqrt{254}=2\sqrt{254}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{254}}{2*2}=\frac{32-2\sqrt{254}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{254}}{2*2}=\frac{32+2\sqrt{254}}{4} $
| 62.4=5.2s | | 7(-t+373)+4t=2209 | | x+58=140+x | | x+49=45 | | 9x2+4.7x-6=0 | | 5x+5=0.4(5x-10) | | 12785x+12275x=23500 | | 0.4(2x+8)-3=41 | | 2x+57=-73 | | 3.40+3.50x=80.40 | | 960.50+35.75p=1818.50 | | X+40+x+46=180 | | -1/2(x+6)=-4-x | | 11+8x=-45 | | Y=3x^2-18x-2 | | x+31+91=180 | | 480+(-5t)=220+3t | | 6x-3(2x+5)=18 | | q-621=296 | | 300=(1-0.2)x | | 763=h+539 | | x^2+(x+3)^2=0 | | s-562=293 | | v+124=642 | | 495=p-64 | | g+51=614 | | f+179=331 | | x=160(6) | | f-147=56 | | x^2+x-3750=0 | | 800y+1000y=10800 | | 800y+1000y=1800 |