If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(2x+4)-2x=-5
We move all terms to the left:
(1/2)(2x+4)-2x-(-5)=0
Domain of the equation: 2)(2x+4)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(2x+4)-2x-(-5)=0
We add all the numbers together, and all the variables
-2x+(+1/2)(2x+4)+5=0
We multiply parentheses ..
(+2x^2+1/2*4)-2x+5=0
We multiply all the terms by the denominator
(+2x^2+1-2x*2*4)+5*2*4)=0
We add all the numbers together, and all the variables
(+2x^2+1-2x*2*4)=0
We get rid of parentheses
2x^2-2x*2*4+1=0
Wy multiply elements
2x^2-16x*4+1=0
Wy multiply elements
2x^2-64x+1=0
a = 2; b = -64; c = +1;
Δ = b2-4ac
Δ = -642-4·2·1
Δ = 4088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4088}=\sqrt{4*1022}=\sqrt{4}*\sqrt{1022}=2\sqrt{1022}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-2\sqrt{1022}}{2*2}=\frac{64-2\sqrt{1022}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+2\sqrt{1022}}{2*2}=\frac{64+2\sqrt{1022}}{4} $
| (1)/(2)(2x+4)-2x=-5 | | -(3/8)m+1-(13/8)m=5 | | -(3/8)m+1-(3/8)m=5 | | -(3)/(8)m+1-(13)/(8)m=5 | | 8x+9-7x=4 | | (-2x+8)=3 | | 3d2-1=5 | | -50.72=6.8x+3 | | -30.69=6.3x+9 | | -9=t-2.5 | | -7=t-3.4 | | 8^3x=16^2x+12 | | 4.84=8.8+x | | -7=11+v | | 1-6(x+6)=11 | | 4b^2=-3b+45 | | 3k^2+7=k | | 4p-12=-3p+15 | | 2x+15=45-x | | a+18+4a-5-3a=25 | | 4k-25+6k=75 | | 3y-y+10=30 | | 4w+w-2w-10=5 | | m+m+20=100 | | 2p-p+54=110 | | 5z+z-8=4 | | 2x+3x-50=25 | | 12/48=x/144 | | 8x-36=2x+16 | | 9x-4=-3x+12x | | 3x=37+x | | 0=544-2x |