If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(12x+8)-(4x+4)=50
We move all terms to the left:
(1/2)(12x+8)-(4x+4)-(50)=0
Domain of the equation: 2)(12x+8)!=0We add all the numbers together, and all the variables
x∈R
(+1/2)(12x+8)-(4x+4)-50=0
We get rid of parentheses
(+1/2)(12x+8)-4x-4-50=0
We multiply parentheses ..
(+12x^2+1/2*8)-4x-4-50=0
We multiply all the terms by the denominator
(+12x^2+1-4x*2*8)-4*2*8)-50*2*8)=0
We add all the numbers together, and all the variables
(+12x^2+1-4x*2*8)=0
We get rid of parentheses
12x^2-4x*2*8+1=0
Wy multiply elements
12x^2-64x*8+1=0
Wy multiply elements
12x^2-512x+1=0
a = 12; b = -512; c = +1;
Δ = b2-4ac
Δ = -5122-4·12·1
Δ = 262096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{262096}=\sqrt{16*16381}=\sqrt{16}*\sqrt{16381}=4\sqrt{16381}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-512)-4\sqrt{16381}}{2*12}=\frac{512-4\sqrt{16381}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-512)+4\sqrt{16381}}{2*12}=\frac{512+4\sqrt{16381}}{24} $
| 3(-4w+11)-2w=-1 | | 3x+6=-4x-2 | | 20=-2(t-88) | | 10=2x+4(2x-15) | | (3/4)x+(1/2)=(2/3)x+9 | | 10=1/10h | | 21-7m=-21 | | x-12=(-27) | | 9p=8(3p-5) | | 1/2(12x+8)-(4x+4)=50 | | -1=3(-4w+11)-2w | | k=3.5 | | 84=7x+7(3x-12) | | 10(v+3)=90 | | x-2.574=10.3 | | 3x+4x+17=24 | | 9+t=-8t | | 23-2c=1 | | 0=2x^2+9x-2700 | | x-(-1/8)=88/4 | | 25=y-1 | | 136+12x=-26x-16-5 | | q/6+18=25 | | x+25+3x+5=90 | | b^2-11b^2=-10 | | 8.6x-10.4=49.8 | | 6x+4(4x-12)=172 | | -10c=-7c-6 | | 5x-8=3+7x* | | x-(-14)=-9 | | 4g+4=3g-4 | | 54+36=9b |