(1/10)x+x+x-135=180

Simple and best practice solution for (1/10)x+x+x-135=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/10)x+x+x-135=180 equation:



(1/10)x+x+x-135=180
We move all terms to the left:
(1/10)x+x+x-135-(180)=0
Domain of the equation: 10)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/10)x+x+x-135-180=0
We add all the numbers together, and all the variables
2x+(+1/10)x-315=0
We multiply parentheses
x^2+2x-315=0
a = 1; b = 2; c = -315;
Δ = b2-4ac
Δ = 22-4·1·(-315)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{79}}{2*1}=\frac{-2-4\sqrt{79}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{79}}{2*1}=\frac{-2+4\sqrt{79}}{2} $

See similar equations:

| -832=-8(11x+16) | | 6+5a-8a=6 | | 5v-10=90 | | -8m+4=7m-128 | | 8x=3^2+7 | | 2(x+2)=6x-60 | | h+501/6=-2002/5 | | 16y-43=4y+6 | | x2+4=0 | | 2x+6=4x+0 | | -5b-3b=-32 | | 5(x+1)=2(3+2) | | -.06(x+.2)=1.8 | | X+1/2y=-1/3 | | 0,2x=12 | | 3(p/2)=12 | | -4p+p=-12 | | 7/2=8/x-7 | | -3u-39=6(u-2) | | -2d-2d=-8 | | 6x+4+4x=34 | | 3x÷2+4x=22 | | 3×-2y=-6 | | 18+2y=16 | | 2k-5k=-28 | | 3t+12=2t+23 | | h+50=-200 | | -o+2o=-3 | | -3x+6=+3 | | 3(y−1)=−1+3y3(y−1)=−1+3y | | 9n-6n=15 | | 8^x=0.8 |

Equations solver categories