(1-x)2(3+2)=(9x-4)(1-x)

Simple and best practice solution for (1-x)2(3+2)=(9x-4)(1-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x)2(3+2)=(9x-4)(1-x) equation:



(1-x)2(3+2)=(9x-4)(1-x)
We move all terms to the left:
(1-x)2(3+2)-((9x-4)(1-x))=0
We add all the numbers together, and all the variables
(-1x+1)25-((9x-4)(-1x+1))=0
We multiply parentheses
-25x-((9x-4)(-1x+1))+25=0
We multiply parentheses ..
-((-9x^2+9x+4x-4))-25x+25=0
We calculate terms in parentheses: -((-9x^2+9x+4x-4)), so:
(-9x^2+9x+4x-4)
We get rid of parentheses
-9x^2+9x+4x-4
We add all the numbers together, and all the variables
-9x^2+13x-4
Back to the equation:
-(-9x^2+13x-4)
We get rid of parentheses
9x^2-13x-25x+4+25=0
We add all the numbers together, and all the variables
9x^2-38x+29=0
a = 9; b = -38; c = +29;
Δ = b2-4ac
Δ = -382-4·9·29
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-20}{2*9}=\frac{18}{18} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+20}{2*9}=\frac{58}{18} =3+2/9 $

See similar equations:

| r+10=10+9r | | 3.333=25x | | -3/2x-6-3=7 | | -8-8-5k=9-10k | | 10=10w-7w | | 2m-8=3m | | -2(6-7a)=-96 | | -8j+7=-9j | | 5(4x+9)=20x-6 | | -7t-8=6+7t | | -5(8x+11)=-15 | | p-1+-2=-5 | | 4x+9=25. | | -7n=-6n-6 | | 5–2x=8x–3 | | 1.25t+7=42.25 | | 20=-2(x-1)+8 | | 4y^-3=11y | | 4x-4+3x+10+14=180 | | p-1+ -2=-5 | | 6-3x=5x-10x+8= | | 7s=10s-9 | | 6(10y-1)=2 | | 3(8x+3)=24x-8 | | 4-7p=-6p | | (5.8+3.6)x=x+14.8 | | 11v+19+19v=19 | | 10x+7=10x-3 | | 0.25x-21=85 | | (5x-18)(4x+7)=360 | | (x-13)+(2x+45)+(X)=180 | | 2p-8=25 |

Equations solver categories