(1-x)(3+4x)+(1-x)(1+2x)=0

Simple and best practice solution for (1-x)(3+4x)+(1-x)(1+2x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x)(3+4x)+(1-x)(1+2x)=0 equation:



(1-x)(3+4x)+(1-x)(1+2x)=0
We add all the numbers together, and all the variables
(-1x+1)(4x+3)+(-1x+1)(2x+1)=0
We multiply parentheses ..
(-4x^2-3x+4x+3)+(-1x+1)(2x+1)=0
We get rid of parentheses
-4x^2-3x+4x+(-1x+1)(2x+1)+3=0
We multiply parentheses ..
-4x^2+(-2x^2-1x+2x+1)-3x+4x+3=0
We add all the numbers together, and all the variables
-4x^2+(-2x^2-1x+2x+1)+x+3=0
We get rid of parentheses
-4x^2-2x^2-1x+2x+x+1+3=0
We add all the numbers together, and all the variables
-6x^2+2x+4=0
a = -6; b = 2; c = +4;
Δ = b2-4ac
Δ = 22-4·(-6)·4
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*-6}=\frac{-12}{-12} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*-6}=\frac{8}{-12} =-2/3 $

See similar equations:

| 1.024^x=1200 | | 5x+25=144 | | 7d=48/5 | | 7d=48/3 | | 32=9x-58 | | 7d=48/2 | | 6x+10=8+4х | | 14/x=1/23 | | 8k^2+7k=0 | | (111)+(y+10)=180 | | n/22=9 | | 12y(5y-7)(4y+9)=0 | | 5x^+6^=37 | | 3x-23=2x-17 | | x^2-10)/(x-1)=(-14-5x)/(x-1) | | 8-x/5=9 | | 5(2x-1)-3x=5x+9.10x-5-3x=5x+9.7x-5=5x+9.12x=4.x=1/3 | | -2.5(4x-4))=-6 | | 10x+17-()=80-() | | 7.23=1.15+x | | m3+3m2-10m=0 | | .25(x+4)-3=27 | | 24÷x(8÷x)=3 | | x+148+x+30+20=180 | | 9x+x+17=80 | | 2(w+15)+2w=230 | | x-4+6x=5+8x | | Y=3(2x-1)(x+8) | | 3(y+6)=4(y+4) | | (-3/2x+1)-9=4/5 | | (-3/2x+1)-9=45 | | -32x+1-9=45 |

Equations solver categories