(1+2x)9=1-(x+4)/6

Simple and best practice solution for (1+2x)9=1-(x+4)/6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1+2x)9=1-(x+4)/6 equation:



(1+2x)9=1-(x+4)/6
We move all terms to the left:
(1+2x)9-(1-(x+4)/6)=0
We add all the numbers together, and all the variables
(2x+1)9-(1-(x+4)/6)=0
We multiply parentheses
18x-(1-(x+4)/6)+9=0
We multiply all the terms by the denominator
18x*6)-(1-(x+4)+9*6)=0
We add all the numbers together, and all the variables
18x*6)-(1-(x+4)=0
Wy multiply elements
108x^2-(x+4)=0
We get rid of parentheses
108x^2-x-4=0
We add all the numbers together, and all the variables
108x^2-1x-4=0
a = 108; b = -1; c = -4;
Δ = b2-4ac
Δ = -12-4·108·(-4)
Δ = 1729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{1729}}{2*108}=\frac{1-\sqrt{1729}}{216} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{1729}}{2*108}=\frac{1+\sqrt{1729}}{216} $

See similar equations:

| 1+2x/9=1-x+4/6 | | 7n-2-6=20 | | 3x+2=25/3 | | 3x+2=81/3 | | X²+10x+1=0 | | 2x-10=5×+5 | | 5c=120-c | | 3-y=y÷2 | | -7(k+5)=-95 | | 24x^2+23-7=0 | | 96=6(x+8) | | 5(2+7v)=220 | | (1+-3y)+3y=1 | | -x+3/x-3=-1 | | 6y-18=4y | | d-25=40 | | 1/3x+36=12+4/9 | | x(64)=x(14.50)+5 | | 88=8(4-7x) | | x^2+(x-3)^2=(x+6)^2 | | 3b-14=10 | | X=180-6x | | 6(8m+5)=366 | | 14=2(3+x) | | 4-3n/5n=-3/5 | | 8+7b=8b | | 15-6c=10 | | 5/10m=25 | | Yx26=494 | | 6n+8=1/2(12n+16 | | 5p-8+2p+22=100 | | 3x-15+45-x=90 |

Equations solver categories