(1)/(8)y+17=2y-118

Simple and best practice solution for (1)/(8)y+17=2y-118 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(8)y+17=2y-118 equation:



(1)/(8)y+17=2y-118
We move all terms to the left:
(1)/(8)y+17-(2y-118)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
We get rid of parentheses
1/8y-2y+118+17=0
We multiply all the terms by the denominator
-2y*8y+118*8y+17*8y+1=0
Wy multiply elements
-16y^2+944y+136y+1=0
We add all the numbers together, and all the variables
-16y^2+1080y+1=0
a = -16; b = 1080; c = +1;
Δ = b2-4ac
Δ = 10802-4·(-16)·1
Δ = 1166464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1166464}=\sqrt{64*18226}=\sqrt{64}*\sqrt{18226}=8\sqrt{18226}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1080)-8\sqrt{18226}}{2*-16}=\frac{-1080-8\sqrt{18226}}{-32} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1080)+8\sqrt{18226}}{2*-16}=\frac{-1080+8\sqrt{18226}}{-32} $

See similar equations:

| 6-9k=-93 | | 57=-6+9n | | 3y-1=4y+25 | | 3x(1+x)=13+x | | 4a+123=2a+81 | | -128=8k-8 | | X+3/5x=26 | | 3(x-1)^2=48 | | 1b+46=16+5b | | 6.3^x^2=15.4^2 | | 5a+149=5a+129 | | 12^2+x^2=13^2 | | 12(3x-1)+96=0 | | 6b+79=3b+43 | | -1k-9=-11 | | 4-4n=-72 | | 3z/10+8=3 | | 1a+130=4a+105 | | 9k+4=-5 | | 5x-49=2x+21 | | 107-11b=1b+37 | | 2u+11=33 | | 16x-10=15x+20 | | 2(x+4=30 | | 11m+3=m+23 | | 40x+30=13 | | 110=(2x+10) | | -16+2x=-24+4 | | -517=55+26q | | Y=-4x^2+6x+2 | | 4=y/13-13 | | 19+7n=299 |

Equations solver categories