(1)/(4)x+32=x+11

Simple and best practice solution for (1)/(4)x+32=x+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(4)x+32=x+11 equation:



(1)/(4)x+32=x+11
We move all terms to the left:
(1)/(4)x+32-(x+11)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
1/4x-x-11+32=0
We multiply all the terms by the denominator
-x*4x-11*4x+32*4x+1=0
Wy multiply elements
-4x^2-44x+128x+1=0
We add all the numbers together, and all the variables
-4x^2+84x+1=0
a = -4; b = 84; c = +1;
Δ = b2-4ac
Δ = 842-4·(-4)·1
Δ = 7072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7072}=\sqrt{16*442}=\sqrt{16}*\sqrt{442}=4\sqrt{442}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{442}}{2*-4}=\frac{-84-4\sqrt{442}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{442}}{2*-4}=\frac{-84+4\sqrt{442}}{-8} $

See similar equations:

| t-65=18 | | 5^y-4=25 | | w-16=45 | | +3c+9c-2c=100 | | 25-h=99 | | 2×-3y=5-×+5y=-7 | | 12o=132 | | 93=3(u+17)-6 | | 45/x=27/9 | | t+24=54 | | 11t=154 | | 31+4v+44+9v=180 | | --5d=2+3+5d= | | -5(-2m-16)=-56 | | --5d=2+3+5d | | X-6-x-7=5-6 | | 10g=320 | | 3(-7x+6)=24 | | 9n=207 | | 3(-d-14)=-12 | | -4(k+5)=-3 | | 10x+24(x-3)=336x= | | 5(2m+16)=56 | | 8i=144 | | X+20+2x+10+x+10=180 | | X+20+2x+10+x+10=189 | | _5b=-3-12+1= | | 2(5r+3)=86 | | 3x—8=7x+4 | | 7h=119 | | 7(t-4)=14 | | 2(2+m)=16 |

Equations solver categories