(1)/(3)x+(x-20)+(x-10)+40=360

Simple and best practice solution for (1)/(3)x+(x-20)+(x-10)+40=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(3)x+(x-20)+(x-10)+40=360 equation:



(1)/(3)x+(x-20)+(x-10)+40=360
We move all terms to the left:
(1)/(3)x+(x-20)+(x-10)+40-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+(x-20)+(x-10)-320=0
We get rid of parentheses
1/3x+x+x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $

See similar equations:

| 14-21n=-3 | | 6=-7x+x | | -3-7r=137 | | 0=-10x^2+24x+15 | | 12x+4=-12 | | V=1/3•3.14•3.14h | | 99+6w=3w | | 8(1-4m)=8-7m | | -3x+6/5=12 | | 22y+14=80 | | 9m-2=160 | | V+12v=0 | | 12-h/23=17 | | r-5-1=-3 | | 9d-8d=10 | | (k-1/4)=12 | | 5-5b=5-b-b | | 19=-d+5 | | j+-2j+1=-18 | | 3(4n-1)-6n=15 | | 0=16t^2+40t+2 | | -24-10x=-8x+42 | | 3x-16+100=180 | | X^2-1.5x-1.68=0 | | 2x+2(-7+3x)=1-x | | -89=-8(6-2x)+7 | | 3=3r-3 | | .5x=-x+3 | | 13y+21=-9 | | (5x-1)2=78 | | 96=8(b+6)+8 | | -205=5(5x-6) |

Equations solver categories