If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1)/(2)x+(x-15)+100+(x-25)+(1)/(2)x=540
We move all terms to the left:
(1)/(2)x+(x-15)+100+(x-25)+(1)/(2)x-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+(x-15)+(x-25)+1/2x-440=0
We get rid of parentheses
1/2x+x+x+1/2x-15-25-440=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x-25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x-25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-30x-50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| 3/7(14x-5)=10 | | 4(z-2)+1z=-13 | | 62.50=2.50x-10 | | 1/8*x=11 | | 5x-(x-4)=2(x+16) | | 3x+101-4x-33=108-10x-10 | | 0=64-16t^2 | | Y=0.75x+4.21 | | 2/3x+4/5=2 | | (5-14)j=3j | | 5x+1x=6x+25+5x | | 6.9a+12=81 | | 12=140x+900 | | 8x+1=7x+7 | | 3(x-4)-3=30 | | 6x+29=3x+129 | | 3x-31=19+x | | -6a+2a=35 | | 1/8×y=4 | | 0.5x=4x+2 | | 8x+9=55+3(2x=1) | | x=2/3=x+4 | | -7(2t+2)=-42 | | 50a=15 | | 5*21^5x=16 | | 5b-2b=30 | | ((7(x-5))/(5x+7))=3 | | 8m-(2m+9)=3m+15 | | 11(b-7)=44 | | 5x+1x=6x+8+8x | | 148.52=1.16t+7 | | 144.79=0.39m+43 |