(1)/(2)r+6=3-2r

Simple and best practice solution for (1)/(2)r+6=3-2r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(2)r+6=3-2r equation:



(1)/(2)r+6=3-2r
We move all terms to the left:
(1)/(2)r+6-(3-2r)=0
Domain of the equation: 2r!=0
r!=0/2
r!=0
r∈R
We add all the numbers together, and all the variables
1/2r-(-2r+3)+6=0
We get rid of parentheses
1/2r+2r-3+6=0
We multiply all the terms by the denominator
2r*2r-3*2r+6*2r+1=0
Wy multiply elements
4r^2-6r+12r+1=0
We add all the numbers together, and all the variables
4r^2+6r+1=0
a = 4; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·4·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*4}=\frac{-6-2\sqrt{5}}{8} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*4}=\frac{-6+2\sqrt{5}}{8} $

See similar equations:

| s+45.45=-89 | | 3(3x-3)=84 | | −2(3b+4)+b=62 | | 4(x-5)+7=-13 | | 31/6b=31/10 | | 36=17-x | | 3(x-5)=2(4x-9) | | 1-2n=11.5 | | -10=8+p | | -17=-8(5x+7) | | -3(3x+7)=-8x | | 3x+11=x+2=180 | | -17=-8(5x+7 | | -1=1+v | | 1x+2=3x-15 | | -18=x+(-12) | | 2x²-14=21 | | 7(1+8d)=31 | | X+8=x^2-4x+3 | | 60+50.45x=40+57.95 | | -9q=-7-10q | | 2d-5+39=180 | | 13x-812x+3=180 | | 4=2(z-6) | | 2n-5n+6.3=-14.4 | | 13x-8*12x+3=180 | | 5n+8+9=-16 | | 13x-8-12x+3=180 | | 25=20+x | | 2(m-6)+1=1 | | F(x)=2x²-16x+35 | | F(x+8)=x^2-4x+3 |

Equations solver categories