If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0.75y-4)(0.75y-4)+(y+3)(y+3)=125
We move all terms to the left:
(0.75y-4)(0.75y-4)+(y+3)(y+3)-(125)=0
We multiply parentheses ..
(+0y^2+0y+0y+16)+(y+3)(y+3)-125=0
We get rid of parentheses
0y^2+0y+0y+(y+3)(y+3)+16-125=0
We multiply parentheses ..
0y^2+(+y^2+3y+3y+9)+0y+0y+16-125=0
We add all the numbers together, and all the variables
y^2+(+y^2+3y+3y+9)+2y-109=0
We get rid of parentheses
y^2+y^2+3y+3y+2y+9-109=0
We add all the numbers together, and all the variables
2y^2+8y-100=0
a = 2; b = 8; c = -100;
Δ = b2-4ac
Δ = 82-4·2·(-100)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{6}}{2*2}=\frac{-8-12\sqrt{6}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{6}}{2*2}=\frac{-8+12\sqrt{6}}{4} $
| 3–(8−2 | | -(x-1)-2(x/3)=0 | | 5x+80+25=180 | | 3x+2-2=2x+1 | | x/3=61 | | 24x+12=28x | | -13x-8=-14 | | 1-10x=-1x+10 | | -8+8x=9x | | 5x+3x-4=2x+8 | | -6x-6=34 | | 19x+20=9x | | 2x-1=3x/7 | | –7a–18=–4 | | -7-4x-8+x=3x+9 | | 8x-14+2x+7=-32 | | –16h+8h+11h−8h−–8h=12 | | -4×x+7=13 | | 18j+–20j+–15j=17 | | c/4-6=15 | | b+59=-39 | | 180=10z+(14z-7) | | 7g=9+8g | | b/–13+4=–3 | | 10x+55=20x-35 | | $$x22=1632 | | 20a+10=25 | | 28/16=(x-8)/20 | | X²+3x-12=6 | | (×+96)+3x=180 | | 172+g=190 | | b+0.1=-1 |