If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0.333+x)/(0.333-x)(0.333+x)=5
We move all terms to the left:
(0.333+x)/(0.333-x)(0.333+x)-(5)=0
Domain of the equation: (0.333-x)(0.333+x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-x)(0.333+x!=-0.333
x∈R
(x+0.333)/(-1x+0.333)(x+0.333)-5=0
We multiply parentheses ..
(x+0.333)/(-1x^2-0.333x+0.333x+0.110889)-5=0
We multiply all the terms by the denominator
-5*(-1x^2-0.333x+0.333x+0.110889)+(x+0.333)=0
We multiply parentheses
5x^2-0x-0x+(x+0.333)-0.554445=0
We get rid of parentheses
5x^2-0x-0x+x+0.333-0.554445=0
We add all the numbers together, and all the variables
5x^2-1x-0.221445=0
a = 5; b = -1; c = -0.221445;
Δ = b2-4ac
Δ = -12-4·5·(-0.221445)
Δ = 5.4289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{5.4289}}{2*5}=\frac{1-\sqrt{5.4289}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{5.4289}}{2*5}=\frac{1+\sqrt{5.4289}}{10} $
| (36-2y/2)^2=2 | | 3y^2+4y-8=0 | | (5x+2)+(5x+2)=14x+3 | | (1/2)x-3/5=2/5 | | 15=4x-49 | | 8x^2+14x=12 | | 7g+3=2g+13 | | 4x-12/5x=2 | | 3x+5=63 | | x^2+8x−9=0 | | 10p=2(p-12) | | 3n+-40+2n=15 | | 3(3x+3)=19x+8 | | (4x-8)+(3x-16)=95 | | 5x+10-x=-6 | | -8x-3=-7x+11 | | 5x+10-x=6 | | (x+2)(x-3)=x2+5x+36 | | (4x-8)+(3x+6)=95 | | 12(n+3)-3n=117n= | | 39+(2x+1)=3x+13 | | 12(n+3)-3n=117.n= | | 4(w-4)-1=-3(-2w+9)-6w | | 2(×-5)+7=x+8 | | 10^2x=40 | | (39)+(3x+1)=3x+13 | | x-1+2(2x+8)=-3(x+1) | | -6(4y-4)+9y=3(y+7) | | (s−9)(s−1)=0(s−9)(s−1)=0 | | −834c−4‾‾‾‾‾‾√3=2 | | 9x-2=x+X+12 | | 26-2x=30 |