If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0.005+x)x=(0.012)(0.005-x)
We move all terms to the left:
(0.005+x)x-((0.012)(0.005-x))=0
We add all the numbers together, and all the variables
(x+0.005)x-((0.012)(-1x+0.005))=0
We multiply parentheses
x^2+0.005x-((0.012)(-1x+0.005))=0
We multiply parentheses ..
x^2+0.005x-((-0.012x+6.0E-5))=0
We calculate terms in parentheses: -((-0.012x+6.0E-5)), so:We get rid of parentheses
(-0.012x+6.0E-5)
We add all the numbers together, and all the variables
(-0.012x+11.309690970754)
We get rid of parentheses
-0.012x+11.309690970754
Back to the equation:
-(-0.012x+11.309690970754)
x^2+0.005x+0.012x-11.309690970754=0
We add all the numbers together, and all the variables
x^2+0.017x-11.309690970754=0
a = 1; b = 0.017; c = -11.309690970754;
Δ = b2-4ac
Δ = 0.0172-4·1·(-11.309690970754)
Δ = 45.239052883016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.017)-\sqrt{45.239052883016}}{2*1}=\frac{-0.017-\sqrt{45.239052883016}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.017)+\sqrt{45.239052883016}}{2*1}=\frac{-0.017+\sqrt{45.239052883016}}{2} $
| 8x-11=9x+5 | | 11/6x-2=5/12-5/3 | | 5x+9-(7x+6)=x+18 | | 11x-33=x | | 6x+2+1x+8=180 | | -3(x+4)+5x=2(x-4)-(5) | | -3(x+4)+5x=2(x-4)-5 | | 12x+34=19x-113 | | 2x2+12x+16=0 | | -1=1/4x-5 | | 5-9x/4-2/7=1/2 | | n=243n-24 | | 4x²-13x+10=0 | | 4x²-11x+14=2x+4 | | (45x+6)/(5x+22)=3 | | 3y=12.5 | | 5u/7+12=-1 | | 6x²+7x-24=0 | | Y=200x+75 | | 4a+2a+3a+a=360 | | X+8÷x+33=4/9 | | X+8/x+33=4/9 | | 9(9x+2)=152 | | (3x+4)(5x-7)=(2x+7)²+53 | | -a+16=14 | | 5x+5=14x-12 | | 5u–10=u+46 | | 16x-4=8x+5 | | -75x=5 | | 8x-8=6x-1 | | 7x+8=18x+1 | | 3z/10+5=-6 |