(.5+7t)(.0625-8t)=0

Simple and best practice solution for (.5+7t)(.0625-8t)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (.5+7t)(.0625-8t)=0 equation:


Simplifying
(0.5 + 7t)(0.0625 + -8t) = 0

Multiply (0.5 + 7t) * (0.0625 + -8t)
(0.5(0.0625 + -8t) + 7t * (0.0625 + -8t)) = 0
((0.0625 * 0.5 + -8t * 0.5) + 7t * (0.0625 + -8t)) = 0
((0.03125 + -4t) + 7t * (0.0625 + -8t)) = 0
(0.03125 + -4t + (0.0625 * 7t + -8t * 7t)) = 0
(0.03125 + -4t + (0.4375t + -56t2)) = 0

Combine like terms: -4t + 0.4375t = -3.5625t
(0.03125 + -3.5625t + -56t2) = 0

Solving
0.03125 + -3.5625t + -56t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
-56 the coefficient of the squared term: 

Divide each side by '-56'.
-0.0005580357143 + 0.06361607143t + t2 = 0

Move the constant term to the right:

Add '0.0005580357143' to each side of the equation.
-0.0005580357143 + 0.06361607143t + 0.0005580357143 + t2 = 0 + 0.0005580357143

Reorder the terms:
-0.0005580357143 + 0.0005580357143 + 0.06361607143t + t2 = 0 + 0.0005580357143

Combine like terms: -0.0005580357143 + 0.0005580357143 = 0.0000000000000
0.0000000000000 + 0.06361607143t + t2 = 0 + 0.0005580357143
0.06361607143t + t2 = 0 + 0.0005580357143

Combine like terms: 0 + 0.0005580357143 = 0.0005580357143
0.06361607143t + t2 = 0.0005580357143

The t term is 0.06361607143t.  Take half its coefficient (0.03180803572).
Square it (0.001011751136) and add it to both sides.

Add '0.001011751136' to each side of the equation.
0.06361607143t + 0.001011751136 + t2 = 0.0005580357143 + 0.001011751136

Reorder the terms:
0.001011751136 + 0.06361607143t + t2 = 0.0005580357143 + 0.001011751136

Combine like terms: 0.0005580357143 + 0.001011751136 = 0.0015697868503
0.001011751136 + 0.06361607143t + t2 = 0.0015697868503

Factor a perfect square on the left side:
(t + 0.03180803572)(t + 0.03180803572) = 0.0015697868503

Calculate the square root of the right side: 0.039620536

Break this problem into two subproblems by setting 
(t + 0.03180803572) equal to 0.039620536 and -0.039620536.

Subproblem 1

t + 0.03180803572 = 0.039620536 Simplifying t + 0.03180803572 = 0.039620536 Reorder the terms: 0.03180803572 + t = 0.039620536 Solving 0.03180803572 + t = 0.039620536 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.03180803572' to each side of the equation. 0.03180803572 + -0.03180803572 + t = 0.039620536 + -0.03180803572 Combine like terms: 0.03180803572 + -0.03180803572 = 0.00000000000 0.00000000000 + t = 0.039620536 + -0.03180803572 t = 0.039620536 + -0.03180803572 Combine like terms: 0.039620536 + -0.03180803572 = 0.00781250028 t = 0.00781250028 Simplifying t = 0.00781250028

Subproblem 2

t + 0.03180803572 = -0.039620536 Simplifying t + 0.03180803572 = -0.039620536 Reorder the terms: 0.03180803572 + t = -0.039620536 Solving 0.03180803572 + t = -0.039620536 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.03180803572' to each side of the equation. 0.03180803572 + -0.03180803572 + t = -0.039620536 + -0.03180803572 Combine like terms: 0.03180803572 + -0.03180803572 = 0.00000000000 0.00000000000 + t = -0.039620536 + -0.03180803572 t = -0.039620536 + -0.03180803572 Combine like terms: -0.039620536 + -0.03180803572 = -0.07142857172 t = -0.07142857172 Simplifying t = -0.07142857172

Solution

The solution to the problem is based on the solutions from the subproblems. t = {0.00781250028, -0.07142857172}

See similar equations:

| -18.9+(-5.8)= | | 2x+10=3x-60 | | ax^2+bx-40=60 | | 5y^2+40y-4=0 | | 4x+2=8x+4 | | (3a+7)(a+6)=0 | | 4x^2+5y^2+40y-16x-4=0 | | 1(2+x)=1(8+x) | | -2.5/2 | | (1-14)*a= | | 7x-3(x-1)=8x+21-3x | | 6(2+2x)=7(x-1) | | -9+2x=-17 | | -16x-8=8x-12 | | -2x+18=x-13 | | 24z^6-21z^4/3z^3 | | -2x+9=x-13 | | (3,2),m=-5/7 | | 3(1-x)=1(3+x) | | -4x+12=5x+4 | | 1(2+x)=1(10+x) | | an=(-3)n | | 1/3-0.08 | | 0.08-1/3 | | -7x-5y=14 | | x-23=38 | | 7x+33=9x+5 | | 1(11+x)=1(29+4x) | | 7m^2-9m-8= | | 3.8x+.2x^2=0 | | 33=3n | | 1(13+x)=1(47+x) |

Equations solver categories