(-x2/40)+(31x/40)+(4/5)=y

Simple and best practice solution for (-x2/40)+(31x/40)+(4/5)=y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-x2/40)+(31x/40)+(4/5)=y equation:


x in (-oo:+oo)

((-x)^2)/40+(31*x)/40+4/5 = y // - y

((-x)^2)/40+(31*x)/40-y+4/5 = 0

1/40*x^2+31/40*x-y+4/5 = 0

DELTA = (31/40)^2-(1/40*4*(4/5-y))

DELTA = 961/1600-1/10*(4/5-y)

961/1600-1/10*(4/5-y) = 0

(-1/10*1600*(4/5-y))/1600+961/1600 = 0

961-1/10*1600*(4/5-y) = 0

160*y+833 = 0

(160*y+833)/1600 = 0

(160*y+833)/1600 = 0 // * 1600

160*y+833 = 0

160*y+833 = 0 // - 833

160*y = -833 // : 160

y = -833/160

DELTA = 0 <=> t_1 = -833/160

x = -31/40/(1/40*2) i y = -833/160

x = -31/2 i y = -833/160

( x = ((961/1600-1/10*(4/5-y))^(1/2)-31/40)/(1/40*2) or x = (-(961/1600-1/10*(4/5-y))^(1/2)-31/40)/(1/40*2) ) i y > -833/160

( x = 20*((961/1600-1/10*(4/5-y))^(1/2)-31/40) or x = -20*((961/1600-1/10*(4/5-y))^(1/2)+31/40) ) i y > -833/160

y-(-833/160) > 0

y+833/160 > 0

y+833/160 > 0 // - 833/160

y > -833/160

x in { -31/2, 20*((961/1600-1/10*(4/5-y))^(1/2)-31/40), -20*((961/1600-1/10*(4/5-y))^(1/2)+31/40) }

See similar equations:

| 247=13.0(16.5+H) | | 5x+8=108-5 | | 35-(2x+5)=2(x+5)+x | | (x^2y^5)^1/5 | | 4=3*y | | 4*y=12 | | 18=12*y | | 12/60 | | 5+3(y-6)=15 | | 2x+19=10x+3 | | 2(3x-1)-x=6 | | (2x+2)=(16-5x) | | (v-4)=0 | | 3(x+12)=4(3x+6) | | (38-2x)=(15x+4) | | 3q+13=10 | | 1.8+4300x=112 | | 7y+y=42 | | 27-7e=25-9e | | 18-(x/7)=9 | | 4300+157x=112 | | .80x+.05(12-x)=.10(21) | | 4(6x-3)=12 | | 0.12(18)+0.03x=0.06(12+x) | | 2x+7=4x+27 | | -12-2x=-7x | | -36=6(3-8n) | | 4300+1.8x=500 | | 12v-8= | | 4300+112x=157 | | 4300+112=157 | | x(7)+16=100 |

Equations solver categories