(-7/2z+4)+(1/5z+15)=0

Simple and best practice solution for (-7/2z+4)+(1/5z+15)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-7/2z+4)+(1/5z+15)=0 equation:



(-7/2z+4)+(1/5z+15)=0
Domain of the equation: 2z+4)!=0
z∈R
Domain of the equation: 5z+15)!=0
z∈R
We get rid of parentheses
-7/2z+1/5z+4+15=0
We calculate fractions
(-35z)/10z^2+2z/10z^2+4+15=0
We add all the numbers together, and all the variables
(-35z)/10z^2+2z/10z^2+19=0
We multiply all the terms by the denominator
(-35z)+2z+19*10z^2=0
We add all the numbers together, and all the variables
2z+(-35z)+19*10z^2=0
Wy multiply elements
190z^2+2z+(-35z)=0
We get rid of parentheses
190z^2+2z-35z=0
We add all the numbers together, and all the variables
190z^2-33z=0
a = 190; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·190·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*190}=\frac{0}{380} =0 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*190}=\frac{66}{380} =33/190 $

See similar equations:

| 2(x+8)-9=-7-5x | | -2(x-2)+4x=3(x+1)-9x | | h-103=377 | | -12=-2+s | | 16+8x=7x-8 | | 3x-3(x-3)=2x(2x-1) | | (2x-9)-(x-4)=1 | | 4.7+1.7x=2.7x | | 3(x+10)=6x-60 | | n/2=-13 | | -4=f+2 | | Y=-x-2;(1,-3) | | 8/9=x=1/3(7) | | -2(7/y)+4=-4 | | 14x-11x=36 | | (-8p/p^2-81)-3/p+9=1/p-9 | | 2x+5+x-4=4x-8 | | -5(n-5)=70 | | 23-3x=-4(4x+2)-4(-5-3x) | | -11/6p-5/3p=21/4 | | 3x+x-2)(3)=12 | | -6+42=-7k-6 | | 3x+(x-2)x3=12 | | -8x=108 | | 12u-5u=21 | | 9=k+2 | | 3p+1.25=9.25 | | 7(2+y)=6(8+y) | | 1.3x+0.8=1.6 | | X+7f=10f | | 14n=-252 | | 13+q=26 |

Equations solver categories