(-7)/2(t)-2=-4-7t

Simple and best practice solution for (-7)/2(t)-2=-4-7t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-7)/2(t)-2=-4-7t equation:



(-7)/2(t)-2=-4-7t
We move all terms to the left:
(-7)/2(t)-2-(-4-7t)=0
Domain of the equation: 2t!=0
t!=0/2
t!=0
t∈R
We add all the numbers together, and all the variables
(-7)/2t-(-7t-4)-2=0
We get rid of parentheses
(-7)/2t+7t+4-2=0
We multiply all the terms by the denominator
7t*2t+4*2t-2*2t+(-7)=0
We add all the numbers together, and all the variables
7t*2t+4*2t-2*2t-7=0
Wy multiply elements
14t^2+8t-4t-7=0
We add all the numbers together, and all the variables
14t^2+4t-7=0
a = 14; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·14·(-7)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{102}}{2*14}=\frac{-4-2\sqrt{102}}{28} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{102}}{2*14}=\frac{-4+2\sqrt{102}}{28} $

See similar equations:

| 4x+4x+4x=192 | | b^2-6b-46=-10 | | (-2/3)x+3/4=5/6 | | 31/2n=28 | | (3x+4)=180 | | 4+2x+50+x=874 | | 4x^2+17x+30=0 | | ,1-5=4x | | 4(4-5x)=18 | | 10y-3=-18 | | 75-2x=-15+4x | | 450/15=225/x | | 25/75=x/300 | | 3x-4=7x+4=180 | | 1,3x=3,9 | | -4(-5y+7)-4y=4(y-8)-5 | | x=1563219+.12x | | 5/2x=8 | | 15+3x=1.5+5x | | 3=80-x | | 0,01x=4 | | 3j+41=35 | | -8(y+4)=2(y-4) | | 7^4x=17^-x-4 | | y+12=-(2y+3) | | 5x×2x=250 | | 5y-3=-3y+12 | | -a/5+3=0 | | 4x+22=8x+10 | | 8y-23y+15=0 | | 3/x=x-2 | | 5.1q-4.2-6.5q=-2.3-1.4q-1.9 |

Equations solver categories