(-6/7)x+43=-29

Simple and best practice solution for (-6/7)x+43=-29 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-6/7)x+43=-29 equation:



(-6/7)x+43=-29
We move all terms to the left:
(-6/7)x+43-(-29)=0
Domain of the equation: 7)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-6/7)x+72=0
We multiply parentheses
-6x^2+72=0
a = -6; b = 0; c = +72;
Δ = b2-4ac
Δ = 02-4·(-6)·72
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-6}=\frac{0-24\sqrt{3}}{-12} =-\frac{24\sqrt{3}}{-12} =-\frac{2\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-6}=\frac{0+24\sqrt{3}}{-12} =\frac{24\sqrt{3}}{-12} =\frac{2\sqrt{3}}{-1} $

See similar equations:

| 15-4u=u | | 1.7=3y+14,9 | | 25^(x+1)-26.5^(x+1)+25=0 | | 1.3=2y+8,9 | | 1.6=3y+12.1 | | 7x2−5x=9x2+7x | | 9(x+4)=3(3+4)+24 | | 26+2y-9=10y-11-4y | | 12(x+7)=4(x+6)-12 | | (x-8)=31 | | 2^x=-2x+4 | | (x-3)=44 | | 14x+15-7x=39 | | 5x×9=2x+1 | | 2(5t-6)=22t+7 | | 2(5t-6=22t+7 | | X+2x-5+x+3=18 | | 10x-6=45x+15 | | 9x-2(5x-7)=21 | | 7x-17+5x+17=180 | | 2=6-2(2x-4) | | 10x-88=8x-48 | | 1/2x–1.0675=3x-4.145 | | 6q-3=3q-3 | | (x2-5x+12)1/5=23/5 | | -4m^2-19m-63=0 | | 8t+4=-76 | | 3x-25=8x | | 5/(x+6)=2/(3-2x) | | −4(3+7x)=72 | | .75x+.50(300-x)=175 | | 31-2k=10 |

Equations solver categories