(-5/6x)-(2/3x)=-24

Simple and best practice solution for (-5/6x)-(2/3x)=-24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-5/6x)-(2/3x)=-24 equation:



(-5/6x)-(2/3x)=-24
We move all terms to the left:
(-5/6x)-(2/3x)-(-24)=0
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-5/6x)-(+2/3x)-(-24)=0
We add all the numbers together, and all the variables
(-5/6x)-(+2/3x)+24=0
We get rid of parentheses
-5/6x-2/3x+24=0
We calculate fractions
(-15x)/18x^2+(-12x)/18x^2+24=0
We multiply all the terms by the denominator
(-15x)+(-12x)+24*18x^2=0
Wy multiply elements
432x^2+(-15x)+(-12x)=0
We get rid of parentheses
432x^2-15x-12x=0
We add all the numbers together, and all the variables
432x^2-27x=0
a = 432; b = -27; c = 0;
Δ = b2-4ac
Δ = -272-4·432·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-27}{2*432}=\frac{0}{864} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+27}{2*432}=\frac{54}{864} =1/16 $

See similar equations:

| 69+77+34p=180 | | 4g-13=7 | | 13p+p+26=180 | | 5r+2(r-1)=-46 | | 2/3x=8=12 | | 18y+126=180 | | 2(6=4n)=12-8n | | -4j=9-3j | | 4(5x+3)-6x=(2x+3)= | | 5n/6=n-8 | | 5p+150=180 | | x=129 | | 4(6n+3)=3n-9 | | 13a+63=180 | | (a+11)+(2a)=17 | | 140+20b=180 | | 1.5d+.3=1+2.2d | | x-2=-1/6x+1/4 | | (3x+5=130 | | 5a+3+2a=17 | | 3x-6=8x+4=130 | | 6(n+7)=36+8n | | 3(6n+11)=18n+45 | | 20m-10=210 | | 2(x+9)=8 | | 6c+3=180 | | 4x+2-2x=-10 | | 1/4m+11=9 | | 1+4K-8k=17 | | x+62+x+84+44=180 | | 94-4x=85-3.5x | | 8(7y)=-24 |

Equations solver categories