(-5/3)-(5/4)v=(1/4)

Simple and best practice solution for (-5/3)-(5/4)v=(1/4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-5/3)-(5/4)v=(1/4) equation:



(-5/3)-(5/4)v=(1/4)
We move all terms to the left:
(-5/3)-(5/4)v-((1/4))=0
Domain of the equation: 4)v!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
-(+5/4)v+(-5/3)-((+1/4))=0
We multiply parentheses
-5v^2+(-5/3)-((+1/4))=0
We get rid of parentheses
-5v^2-5/3-((+1/4))=0
We calculate fractions
-5v^2+()/()+()/()=0
We add all the numbers together, and all the variables
-5v^2+2=0
a = -5; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-5)·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-5}=\frac{0-2\sqrt{10}}{-10} =-\frac{2\sqrt{10}}{-10} =-\frac{\sqrt{10}}{-5} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-5}=\frac{0+2\sqrt{10}}{-10} =\frac{2\sqrt{10}}{-10} =\frac{\sqrt{10}}{-5} $

See similar equations:

| -5/3-5/4v=1/4 | | (7+z)(3z+4)=0 | | 162-4x=5x-18 | | y=2.3* | | 5x+7-3x-2x=8 | | -9-3=-3(9g+2) | | 14+(4y+26)=360 | | (12x-14)+(360-6x+40)=360 | | 3x=(1/2)-2 | | (12x-4)+(360-6x+40)=360 | | 2(6x-7)+2(180-3x+20)=360 | | 14x7.2=100.8 | | x+4=154 | | x+44=45 | | 2(6x-7)+2(180-3x+20)=180 | | 44(x)=45 | | 44+x=45 | | 19x+5=5x-7 | | 7x+9+3x-5=100 | | 9^(-x-2)=17^9x | | x(-8)=10 | | 120=9x+3 | | (6x+17)^2=75 | | (6x+17^)2=75 | | 8x+13=226-x | | 8r+7=31 | | 0.07x+x=18000 | | 7+5x=10-8-x | | x(.1475)=150 | | x+14.75=150 | | 7x+11=45 | | 10x-14=5x+10 |

Equations solver categories