(-4x+4)(-9x+4)+(-4x+4)(6x+3)=0

Simple and best practice solution for (-4x+4)(-9x+4)+(-4x+4)(6x+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x+4)(-9x+4)+(-4x+4)(6x+3)=0 equation:



(-4x+4)(-9x+4)+(-4x+4)(6x+3)=0
We multiply parentheses ..
(+36x^2-16x-36x+16)+(-4x+4)(6x+3)=0
We get rid of parentheses
36x^2-16x-36x+(-4x+4)(6x+3)+16=0
We multiply parentheses ..
36x^2+(-24x^2-12x+24x+12)-16x-36x+16=0
We add all the numbers together, and all the variables
36x^2+(-24x^2-12x+24x+12)-52x+16=0
We get rid of parentheses
36x^2-24x^2-12x+24x-52x+12+16=0
We add all the numbers together, and all the variables
12x^2-40x+28=0
a = 12; b = -40; c = +28;
Δ = b2-4ac
Δ = -402-4·12·28
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16}{2*12}=\frac{24}{24} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16}{2*12}=\frac{56}{24} =2+1/3 $

See similar equations:

| 3x+2(4-x)=19 | | 7x=25-5*(x-8) | | 7x/6=25-5*(x-8) | | 7x/6=25-5(x-8) | | 7x/6x=25-5(x-8) | | 7x/6x=25x-5(x-8) | | 7x/6x=25x-(5(x-8) | | 120-64x=-x+348-6× | | 3x-19=6x+6x | | X^2-10x=9=0 | | 765x=548x+407 | | x^2-2x+4=39 | | 11x^2+19=0 | | 5x=10-55x | | 1/2x+8=37 | | 14=-86+5x | | x-(x-)=3x+(x-8) | | 5(7x+61)=31(×+1) | | X-6=2x+8=90=180 | | 322=89y-78y+3y4 | | 6x-(x+5)=3(x+10) | | 4x2-5x+81=0 | | 3x-6(x-)=-12 | | x4+4x2-5=0 | | 12x-14=7x-59 | | 2x4+50x2=0 | | 133y+45y+76y=759 | | (3x+5)/4=8 | | 5x+-7x=100 | | 5x+7x=100 | | 9c-11=52 | | x/9+7=11 |

Equations solver categories