(-41/2)z=-18

Simple and best practice solution for (-41/2)z=-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-41/2)z=-18 equation:



(-41/2)z=-18
We move all terms to the left:
(-41/2)z-(-18)=0
Domain of the equation: 2)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(-41/2)z+18=0
We multiply parentheses
-41z^2+18=0
a = -41; b = 0; c = +18;
Δ = b2-4ac
Δ = 02-4·(-41)·18
Δ = 2952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2952}=\sqrt{36*82}=\sqrt{36}*\sqrt{82}=6\sqrt{82}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{82}}{2*-41}=\frac{0-6\sqrt{82}}{-82} =-\frac{6\sqrt{82}}{-82} =-\frac{3\sqrt{82}}{-41} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{82}}{2*-41}=\frac{0+6\sqrt{82}}{-82} =\frac{6\sqrt{82}}{-82} =\frac{3\sqrt{82}}{-41} $

See similar equations:

| (2x)x4=8 | | 6+0.6w=23.4 | | 2x·4=8 | | x+235.12=310.12 | | 36=4πrˆ2 | | 0.2r=2 | | 5x-13=2x-16 | | 10z-15-4z=8+2z-15 | | 25+35x=200 | | (2x-5)/7+x=3 | | 200+20x=500 | | 5x-3x-4=-2 | | 2^(2x)-2^(x+5)+256=0 | | A=4×3.14r2 | | -24=-13+x | | 0.07y=5000 | | 2x-5+1+x=x6 | | 3x+1+x=x6 | | 7+3y=8y+17 | | x+(x*8)=36 | | x+37/8=4 | | 3a+6=-5(a+2) | | 3/5q+12=4 | | 4x^2-9x-48=0 | | 7x+2-3(x+1)=8x+2 | | 7x+9+4x+22=90 | | x+(x*8)=18 | | 3x-2x+3=+6-1 | | 6p+5=7p+8 | | y=1,8=3.14 | | 5x-20=-8(x+9) | | 5x-20=18(x+9) |

Equations solver categories