(-4/11)y=-16/33

Simple and best practice solution for (-4/11)y=-16/33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4/11)y=-16/33 equation:



(-4/11)y=-16/33
We move all terms to the left:
(-4/11)y-(-16/33)=0
Domain of the equation: 11)y!=0
y!=0/1
y!=0
y∈R
We multiply parentheses
-4y^2-(-16/33)=0
We get rid of parentheses
-4y^2+16/33=0
We multiply all the terms by the denominator
-4y^2*33+16=0
Wy multiply elements
-132y^2+16=0
a = -132; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-132)·16
Δ = 8448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8448}=\sqrt{256*33}=\sqrt{256}*\sqrt{33}=16\sqrt{33}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{33}}{2*-132}=\frac{0-16\sqrt{33}}{-264} =-\frac{16\sqrt{33}}{-264} =-\frac{2\sqrt{33}}{-33} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{33}}{2*-132}=\frac{0+16\sqrt{33}}{-264} =\frac{16\sqrt{33}}{-264} =\frac{2\sqrt{33}}{-33} $

See similar equations:

| 3n−4=14 | | -1+9f=3f+11 | | 27+13=18+y | | -4/3x+8=1/4x-1 | | -9=-2y-5 | | 8-4y=2y | | 4p-7=1+8p | | 5(5x+16)-2x=3(x+10) | | 2a+10=-26 | | 3/8x+1/5=46 | | 4(t+t)=-4 | | (24-6)÷3=m | | (y+2)10−1=1 | | (3x+38)=5 | | -4/11*y=-16/33 | | 31=x+5x+7 | | x-5/2-4=9 | | -5=6x+9 | | 4y−8=2y | | 22=n-50 | | 0.666666667(6x+30)=x+5(x+4)-2x | | 8x-4=2+6 | | x-(5/6)=-5/6 | | 2.3x+17=9.68x+21.6–6.23x | | 6(x+3)-(-x+4)=-11 | | 5/7y-10=30 | | x2=100x36 | | x+18+6x+1=180 | | F(2)=4x-3(x+7) | | 7p−3=32 | | Y-9y+18=2y-12 | | 10+x=15+.80x |

Equations solver categories