(-3/4)z+1=-41/70

Simple and best practice solution for (-3/4)z+1=-41/70 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3/4)z+1=-41/70 equation:



(-3/4)z+1=-41/70
We move all terms to the left:
(-3/4)z+1-(-41/70)=0
Domain of the equation: 4)z!=0
z!=0/1
z!=0
z∈R
We multiply parentheses
-3z^2+1-(-41/70)=0
We get rid of parentheses
-3z^2+1+41/70=0
We multiply all the terms by the denominator
-3z^2*70+41+1*70=0
We add all the numbers together, and all the variables
-3z^2*70+111=0
Wy multiply elements
-210z^2+111=0
a = -210; b = 0; c = +111;
Δ = b2-4ac
Δ = 02-4·(-210)·111
Δ = 93240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{93240}=\sqrt{36*2590}=\sqrt{36}*\sqrt{2590}=6\sqrt{2590}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2590}}{2*-210}=\frac{0-6\sqrt{2590}}{-420} =-\frac{6\sqrt{2590}}{-420} =-\frac{\sqrt{2590}}{-70} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2590}}{2*-210}=\frac{0+6\sqrt{2590}}{-420} =\frac{6\sqrt{2590}}{-420} =\frac{\sqrt{2590}}{-70} $

See similar equations:

| q/4− 2=1 | | 2r+3=12-r | | 4t+7=3t+6 | | -5/9x-7/36x+1/4x=-54 | | 3x-4=2+6x/7 | | 309-8(5k+8)-5k=k | | x-(0.93)=5.13 | | 2(2-w)=3(w+8) | | 5s=120 | | (-3)/4z+1=-41/70 | | r3+10=8 | | 3r-8=2r-4+r | | -3(2x-5)=2x+39 | | 2+6x/7=4-3x | | (-3)/4z+1=41/70 | | 5/x−3=7/x−9 | | x^2+2x-337.5=0 | | 4t-5=5t+7 | | x/4+-8=51 | | -3/4z+1=-41/70 | | 52c-4=10c-9 | | 7/6x+2=4-3x | | p2–6=–7 | | 2(4 | | 2(4 | | R=7(b-7) | | 5+29/70-v=6 | | 7(2e-1)-3=6+6e7(2e−1)−3+6+6e | | -6+x=5x-30 | | z6–1=1 | | |3x+15|=42 | | 2+12-4x=20-10x |

Equations solver categories