If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-3+(2/3)(6x-42))=-51
We move all terms to the left:
(-3+(2/3)(6x-42))-(-51)=0
Domain of the equation: 3)(6x-42))!=0We add all the numbers together, and all the variables
x∈R
(-3+(+2/3)(6x-42))-(-51)=0
We add all the numbers together, and all the variables
(-3+(+2/3)(6x-42))+51=0
We multiply parentheses ..
(-3+(+12x^2+2/3*-42))+51=0
We multiply all the terms by the denominator
(-3+(+12x^2+2+51*3*-42))=0
We calculate terms in parentheses: +(-3+(+12x^2+2+51*3*-42)), so:a = 12; b = 0; c = 0;
-3+(+12x^2+2+51*3*-42)
determiningTheFunctionDomain (+12x^2+2+51*3*-42)-3
We get rid of parentheses
12x^2+2-42-3+51*3*
We add all the numbers together, and all the variables
12x^2
Back to the equation:
+(12x^2)
Δ = b2-4ac
Δ = 02-4·12·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{0}{24}=0$
| X^2+6x+240=0 | | -y=-108+2y | | 2/3(4x-7)=2 | | -3(4x+1)+2x=57 | | -6x+6x=12 | | (5x-1)/2-(5x-2)/3=1 | | 2x-3=2×(3x-1)-5 | | -15-2(x-1)-3x=-3 | | 2x-4(x-5)=-6+5x+12 | | 5-(6x-19)=-18 | | 1/64=4^x | | 3x^2+2=13 | | 54+3u=12u | | 3t+3|5|=6 | | 5y+22=7(y+6) | | 18=14y-5y | | 8y+y=81 | | 2x+5=6(x-1)+3 | | 2x+5=6(x+1)+3 | | 4(x-3)-4=81/2x+11 | | 2(y-5)+3y=y+26 | | 4x^2-2=13 | | 7/10=n-5/n-4 | | 256=-v+87 | | 16=171-w | | 6(x+6)-3=45 | | 2x+19+x+15=10 | | 2•-2-(-2)y=2 | | X+3+5=2x-8 | | 1/4x+2=-7 | | 4x+2+6x-9=180 | | x-2/2=-7 |