If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-2u + -7u + -6) + -1(4u + -5u + 8) + (2u + -7u + 7) = 0 Reorder the terms: (-6 + -2u + -7u) + -1(4u + -5u + 8) + (2u + -7u + 7) = 0 Combine like terms: -2u + -7u = -9u (-6 + -9u) + -1(4u + -5u + 8) + (2u + -7u + 7) = 0 Remove parenthesis around (-6 + -9u) -6 + -9u + -1(4u + -5u + 8) + (2u + -7u + 7) = 0 Reorder the terms: -6 + -9u + -1(8 + 4u + -5u) + (2u + -7u + 7) = 0 Combine like terms: 4u + -5u = -1u -6 + -9u + -1(8 + -1u) + (2u + -7u + 7) = 0 -6 + -9u + (8 * -1 + -1u * -1) + (2u + -7u + 7) = 0 -6 + -9u + (-8 + 1u) + (2u + -7u + 7) = 0 Reorder the terms: -6 + -9u + -8 + 1u + (7 + 2u + -7u) = 0 Combine like terms: 2u + -7u = -5u -6 + -9u + -8 + 1u + (7 + -5u) = 0 Remove parenthesis around (7 + -5u) -6 + -9u + -8 + 1u + 7 + -5u = 0 Reorder the terms: -6 + -8 + 7 + -9u + 1u + -5u = 0 Combine like terms: -6 + -8 = -14 -14 + 7 + -9u + 1u + -5u = 0 Combine like terms: -14 + 7 = -7 -7 + -9u + 1u + -5u = 0 Combine like terms: -9u + 1u = -8u -7 + -8u + -5u = 0 Combine like terms: -8u + -5u = -13u -7 + -13u = 0 Solving -7 + -13u = 0 Solving for variable 'u'. Move all terms containing u to the left, all other terms to the right. Add '7' to each side of the equation. -7 + 7 + -13u = 0 + 7 Combine like terms: -7 + 7 = 0 0 + -13u = 0 + 7 -13u = 0 + 7 Combine like terms: 0 + 7 = 7 -13u = 7 Divide each side by '-13'. u = -0.5384615385 Simplifying u = -0.5384615385
| 5+35x=20x+11 | | 6a^2=-18a | | 27-5x=9-7x | | 1-2f=15 | | 5(7n+1)= | | 7y-12=-17+8y | | x^4+2x^3+11x^2+2x+10=0 | | 6x+9=9(x+1)-3x | | 5x+10=-30-3x | | 7y-21=-31+9y | | 3y^3-4y^2-4y=0 | | 10=4(3.14)r^2 | | 40=t^2-2t-7 | | 5x^2+25x+250=0 | | 1+6x=-24+x | | x^2(x+2)=5x+6 | | 9k=117 | | 6(3+3x)-4=68 | | 4x-16y=28 | | 7w=147 | | 3x-5+2x=6-x+1 | | -26+3x=-39+4x | | -2+8x=-9+7x | | 2(4c-1)-1=3c+7 | | -(z+6)+(3z+1)=-3(z+1) | | (8x-8)(7x+4)= | | 2(4c-l)-1=3c+7 | | 52-6x=12-10x | | 28+2y-2=11y-9-4y | | 7+8(x-6)=3-9(x-4) | | (m+1)/4=(3m+6)/7 | | 4x+12=-24-5x |