(-10)=(2x+3)(-1-x)

Simple and best practice solution for (-10)=(2x+3)(-1-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-10)=(2x+3)(-1-x) equation:



(-10)=(2x+3)(-1-x)
We move all terms to the left:
(-10)-((2x+3)(-1-x))=0
We add all the numbers together, and all the variables
-((2x+3)(-1x-1))+(-10)=0
We add all the numbers together, and all the variables
-((2x+3)(-1x-1))-10=0
We multiply parentheses ..
-((-2x^2-2x-3x-3))-10=0
We calculate terms in parentheses: -((-2x^2-2x-3x-3)), so:
(-2x^2-2x-3x-3)
We get rid of parentheses
-2x^2-2x-3x-3
We add all the numbers together, and all the variables
-2x^2-5x-3
Back to the equation:
-(-2x^2-5x-3)
We get rid of parentheses
2x^2+5x+3-10=0
We add all the numbers together, and all the variables
2x^2+5x-7=0
a = 2; b = 5; c = -7;
Δ = b2-4ac
Δ = 52-4·2·(-7)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-9}{2*2}=\frac{-14}{4} =-3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+9}{2*2}=\frac{4}{4} =1 $

See similar equations:

| 5i​ +9=17 | | 180+x=5x | | s-12=45 | | -3x+5+4x=2x+5-12 | | 40x^2-41x-21=0 | | 3(x+20)=3x | | 1,038=6(x+16) | | x-x=12,48 | | 11+3z=4 | | 11+3zz=4 | | 12x+9=99 | | 9=9912x+8 | | 2.5=50s | | x=(x-18) | | 0.375x+3=0.5x+2.5+4 | | 2^x=50000000000000 | | 3(x+3)=2(x−4) | | 3^2x-4(3^(x+1))+27=0 | | ∣4y+7∣=17 | | x=10+0.23x | | 5f-10=15 | | 10+2/5x-3=9 | | d÷3=27 | | y÷5=50 | | 19/6x=38/45 | | 1x2^x=100,000 | | 5.5g=3g+8 | | |7-22x|=21 | | 5x+7=360 | | 6(-6x-6)=12(-5x-7) | | ?x30=60 | | 0.115x+0.06(30,000-x)=2,790 |

Equations solver categories